2401.14428v1 [cs. AR] 24 Jan 2024

arxXiv

The Landscape of Compute-near-memory and
Compute-in-memory: A Research and Commercial Overview

ASIF ALI KHAN, TU Dresden, Germany

JOAO PAULO C. DE LIMA, TU Dresden and ScaDS.AI Germany
HAMID FARZANEH, TU Dresden, Germany

JERONIMO CASTRILLON, TU Dresden and ScaDS.Al, Germany

In today’s data-centric world, where data fuels numerous application domains, with machine learning at the
forefront, handling the enormous volume of data efficiently in terms of time and energy presents a formidable
challenge. Conventional computing systems and accelerators are continually being pushed to their limits to stay
competitive. In this context, computing near-memory (CNM) and computing-in-memory (CIM) have emerged
as potentially game-changing paradigms. This survey introduces the basics of CNM and CIM architectures,
including their underlying technologies and working principles. We focus particularly on CIM and CNM
architectures that have either been prototyped or commercialized. While surveying the evolving CIM and CNM
landscape in academia and industry, we discuss the potential benefits in terms of performance, energy, and cost,
along with the challenges associated with these cutting-edge computing paradigms.

1 INTRODUCTION

In conventional computing systems, the processor and memory are two independent entities connected
via communication pathways, known as buses. When the CPU processes data, it requires fetching
it from memory via the bus, conducting the necessary computations, and subsequently storing the
results back in memory. This off-chip communication becomes a limiting factor for data-intensive
workloads due to the limited transfer rate and high energy per bit of buses. For example, the data
transfer between the logic (CPUs and GPUs) and memory chips (DRAM or flash memory) requires
approximately 10—100 times more energy than the logic operation itself [1]. Compute-near-memory
(CNM) and compute-in-memory (CIM) concepts address this bottleneck by enabling computations
close to where the data resides. This is achieved either by implementing CMOS logic on or closer to
the memory chip, or by leveraging the inherent physical properties of memory devices to perform
computations in place.

The core concept behind CNM/CIM is not entirely new. However, the sudden surge in these systems
can be attributed to two primary factors, namely, the exponential increase in the volume of data
required for modern applications, and the technological readiness. Recent advancements in machine
learning, particularly the emergence of generative Al and large language models (LLM), demand the
processing of terabytes of data, substantial computational resources, and complex execution, thus
highlighting the limitations of traditional computing systems. A recent study revealed that OpenAl
utilized over 3600 of NVIDIA’s HGX A 100 servers, totaling around 29,000 GPUs, to train ChatGPT,
resulting in a daily energy consumption of 564 MWh [2]. Projections indicate that by 2027, Al is
expected to consume between 85 and 124 TWh annually, equivalent to approximately 0.5% of the
world’s total electricity consumption. It is no surprise that Microsoft has announced plans to develop
its own nuclear reactors to power their data centers [3].

Currently, machine learning applications primarily leverage GPU accelerators like A100, H100,
GH200, application-specific integrated circuits (e.g., Google’s TPU), and dataflow processors as
in the case of companies like GraphCore, Cerebras, Groq, and SambaNova [4]. Over the past few

Authors’ addresses: Asif Ali Khan, TU Dresden, Dresden, Germany, asif_ali.khan@tu-dresden.de; Jodo Paulo C. de Lima,
TU Dresden and ScaDS.AI, Dresden, Germany, joao.lima@tu-dresden.de; Hamid Farzaneh, TU Dresden, Dresden, Germany,
hamid.farzaneh @tu-dresden.de; Jeronimo Castrillon, TU Dresden and ScaDS.AI, Dresden, Germany, jeronimo.castrillon@tu-
dresden.de.

HTTPS://ORCID.ORG/0000-0002-5130-9855
HTTPS://ORCID.ORG/0000-0001-9295-3519
HTTPS://ORCID.ORG/0000-0002-1780-6217
HTTPS://ORCID.ORG/0000-0002-5007-445X
https://orcid.org/0000-0002-5130-9855
https://orcid.org/0000-0001-9295-3519
https://orcid.org/0000-0002-1780-6217
https://orcid.org/0000-0002-5007-445X

2 Asif Ali Khan, Joao Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

years, CNM/CIM systems have also transcended their prototypical stages and successfully entered
the market. The timing of these advancements in CIM/CNM systems is of paramount importance as
it perfectly aligns with the Al revolution. As a result, numerous companies have emerged in the last
few years offering CIM/CNM solutions for various use domains. This surge reflects a competitive
landscape where these companies are striving to leverage the demand and cater to various market
segments. All commercially available solutions hold the promise of significantly reducing execution
time and energy consumption for data-intensive workloads.

This survey explores CNM and CIM architectures, detailing their technologies, fundamental
concepts, working principles, and the evolving landscape in academia and industry. Addressing a
broader audience, it provides foundational concepts for non-experts while delivering state-of-the-art
insights for experts in the domain. It also summarizes the impact and challenges associated with
adopting the novel CIM/CNM computing paradigms. Concretely, our discussion revolves around
three key aspects:

(1) Key technologies and concepts: In CNM systems, a specialized CMOS logic is integrated
into the memory chip. This logic can be either general-purpose, as in UPMEM systems [5], or
domain-specific, as in systems developed by Samsung [6, 7] and SK Hynix [8, 9], integrated
within DRAM memory chips. While CNM significantly reduces data movement, it does not
eliminate it. In contrast, CIM nearly eliminates data movement by performing computations
within the same devices that store the data. A particularly noteworthy operation is the
analog dot-product in memory, which is of significant importance to the machine learning
domain and can be performed in constant time. Initially demonstrated in crossbar-configured
resistive non-volatile memory (NVM) technologies like phase change memory (PCM) [10]
and resistive RAM (RRAM) [11], this concept has also been shown with SRAM, magnetic
RAM (MRAM) [12], and ferroelectric field-effect transistor (FeFET) [13]. While other
arithmetic, search and boolean logic operations have also been demonstrated using CIM, they
have received comparatively less attention.

(2) Commercial trends: As the demand for fast and efficient computing systems continues to rise,
the in-/near-memory computing market is experiencing rapid expansion. In 2022, this market
was valued at USD 15.5 billion, with an anticipated compound annual growth rate (CAGR)
of 17.5% over the next decade [14]. This growth is underscored by the proliferation of
startups offering CIM and CNM solutions. Some of these companies have secured hundreds
of millions of dollars in early funding rounds. While many of these companies provide
innovative solutions for data-intensive applications (dominated by Al inference), there is no
clear winner yet. At present, these solutions are predominantly based on SRAM technology,
although solutions based on resistive NVM and flash technologies also exist [15]. This
trend can be attributed to the mature tools and design processes for SRAM compared to
emerging NVMs. However, considering the SRAM’s scalability aspects and its static power
consumption, it is likely that NVMs, particularly PCM, RRAM, MRAM, and FeFET, will
progressively replace or complement SRAM as these technologies mature.

(3) Challenges: Although CIM/CNM systems are at the tipping point, they are yet to make
substantial inroads into the market. The predominant obstacle facing these systems is perhaps
the absence of a software ecosystem, which renders programmability and optimization
exceedingly challenging. This is also highlighted by a recent Meta article [16] stating, We 've
investigated applying processing-in-memory (PIM) to our workloads and determined there
are several challenges to using these approaches. Perhaps the biggest challenge of PIM
is its programmability. Other challenges requiring attention include: addressing reliability
concerns associated with emerging NVMs (particularly in the CIM context), developing

CNM/CIM Landscape 3

novel performance models, profiling and analysis tools for these systems, which could be
leveraged to exploit their potential effectively.

The remainder of this paper is structured as follows: Section 2 explains the terminology associated
with these domains and provides insights into the conventional Von-Neumann computing approach,
as well as the emerging data-centric paradigms. In Section 3, a comprehensive overview of promising
memory technologies within the context of CIM and CNM systems is provided. Section 4 outlines
various common CIM and CNM systems including very recent prototype chips from various industries.
Lastly, Section 5 presents a comprehensive overview of the commercial landscape for these systems
(start-ups), discussing their products details, target application domain, and funding status. Finally,
Section 6 concludes the paper by summarizing our key observations and providing insights and
recommendations into the future.

2 TERMINOLOGY AND BACKGROUND

This section highlights the bottleneck in the Von Neumann computing model by discussing its working
mechanism, motivates the need for memory-centric computing, and explains the terminology.

2.1 Mainstream Von-Neumann Computing

As depicted in Figure 1a, the interaction between memory and the processor in the Von Neumann
architecture is facilitated through address and data buses. However, because CPU performance
significantly outpaces memory performance, the Von Neumann models are often bottlenecked by the
memory. To address this challenge and mitigate the impact of larger memory access latencies on
the CPU, modern processors incorporate a tiered hierarchy of caches. Caches are smaller memory
units that, while being much smaller compared to main memory and storage, are notably faster. The
first-level cache (L1) is typically integrated onto the CPU chip and operates nearly at CPU speed,
enabling single-cycle access. L2 cache is usually shared by multiple cores and can vary in location
depending on the design goals. Some systems even include an L3 cache, usually larger and situated
off-chip.

Processing unit

Conventional memory

Data D Digital interface

-—
4 010001010101011000101010

Memory array
(storing D)

11101001010001010100100100

R —
Result f(D)

Computation in
>._ processor

Computation in
memory

Memory array
(storing D)
1001

Command ("perform fon D”)

Fig. 1. (a) Conventional computing system where an operation f is performed on data D in the CPU (b)
Memory-centric design where f is computed in the proximity of D and CPU is mainly working as a control
unit [17].

4 Asif Ali Khan, Joao Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

Note that Von Neumann architectures are characterized by the sequential execution of instructions.
However, in multi-core CPU systems, parallel execution of instructions at various levels of granularity,
including instruction-level, data-level, and thread-level parallelisms, is supported. To enhance
performance and energy efficiency in resource-constrained systems, specialized accelerators are
often developed and integrated on the same chip. For instance, in application domains such as
embedded systems, digital signal processing, and networking, multiprocessor system-on-chip (MPSoC)
architectures are employed. These integrate multiple processor cores, memory, input/output interfaces,
and potentially specialized hardware accelerators, enabling parallel execution of different tasks to
meet specific constraints.

Although these designs may significantly enhance performance when compared to conventional
CPU-only systems, the underlying design principle remains CPU-centric and follows the Von
Neumann model of execution. Consequently, the performance improvements, largely resulting from
concurrent execution, heavily rely on the nature of the application. In cases where an application
is memory-bound, i.e., most of the execution time is spent on the memory accesses and not on the
actual compute operations, the shared data bus is fully occupied and becomes a bottleneck. Even for
compute-bound applications, where these architectures can yield substantial gains in execution time,
power consumption remains largely unaffected and might even increase due to the complex structure
of these systems.

2.2 Memory-centric computing

Unlike conventional computing systems where CPU has a central role and is responsible for all
computations, most computations in the memory-centric designs are performed within or near
memory. As depicted in Figure 1b, the core concept revolves around minimizing data transfer on the
bus by relocating a substantial share of computations closer to the data (memory). The CPU’s primary
role becomes issuing commands and handling computations that cannot be effectively executed in
close proximity to the memory.

The concept of memory-centric computing is not a novel one, but it has experienced a significant
surge in recent years. Consequently, various terms have emerged, often referring to the same idea,
and more detailed classifications have been introduced in architectural designs. This section aims to
clarify the terminology surrounding these approaches.

2.2.1 Compute-in-memory. Computing systems can be broadly divided into two categories:
compute-in-memory (CIM) systems and compute-outside-memory (COM) systems (see Section 2.1).
In the literature, there are different names for similar things. These architectures are often named
based on (1) the location of the compute units within the memory hierarchy (near cache or near
main memory), or (2) based on the underlying paradigm, i.e., whether the memory device itself is
used to implement computation (CIM), or whether extra CMOS-logic is added near the memory
to perform computations (compute-near-memory (CNM)). Figure 2 shows an overview of different
processor and memory system configurations. A compute operation can be a logic operation or an
arithmetic operation such as addition and multiplication. CIM systems are also frequently referred
to as in-memory-computing (IMC), in-memory-processing (IMP), processing-in-memory (PIM),
processing-using-memory (PUM) or logic-in-memory (LIM) systems [18]. For the purposes of this
report, we will use the term CIM.

2.2.2 Compute-near-memory. When operations are computed outside the memory (COM) using
conventional computing cores (Fig 2.a), the architecture is a conventional Von Neumann system (see
Section 2.1). On the other hand, if the computations are performed outside the memory but with
a dedicated logic unit connected to the memory module via a high-bandwidth channel (Fig 2.b),
the system is referred to as a compute-near-memory (CNM) or near-memory-computing (NMC) or

CNM/CIM Landscape 5

near-memory-processing (NMP), or processing-near-memory (PNM) system. In this report, we will
restrict ourselves to calling it CNM.

In the CIM category, computations can be carried out using memory cells within the memory array,
known as CIM-array (CIM-A) (see Fig 2.d). Alternatively, computations can occur in the memory
peripheral circuitry, termed CIM-peripheral (CIM-P) (see Fig 2.c).

Main Processor

a) COM b) CNM . c)CIM-P . d) CIM-A

11T s II TR T T
.Memory

. . . . Ex‘fa |°9'C°"0'JltPeriphe"al

....LDgic

Peripheral circuit” Memory array) Compute capable penpheral " Compute capable memory array

Fig. 2. High-level overview of systems where computation is performed a) COM (mainstream computing):
outside of memory system, b) CNM: using a logic connected to the memory via the memory high-bandwidth
channel, ¢) CIM-P: in the memory peripheral circuitry, and d) CIM-A: using memory cells within the memory
array.

In CIM-A, memory cells are often modified to support logic design, e.g., in [19]. Sometimes, it also
necessitates changes to the periphery to support the modified cells. Therefore, some literature further
divides the CIM-A designs into basic CIM-A that do not require any modifications to the periphery,
e.g., [20], and hybrid CIM-A that requires support from the peripheral circuit. A well-known example
of a hybrid CIM-A is the MAGIC design [19] that requires extending the peripheral circuit to write
multiple memory rows simultaneously.

Typical examples of CIM-P architectures are crossbars employing analog-to-digital converters
(ADCs) and digital-to-analog converters (DACs) to implement matrix-vector multiplication (MVM)
and other logic operations [21, 22]. Additionally, CIM-P designs employing customized sense
amplifiers also exist [23]. Similar to CIM-A, CIM-P can be either basic, as in Pinatubo [23], requiring
no changes to the memory array, or hybrid, as seen in ISAAC [22]. A summary of the terminology’s
classification is presented in Figure 3.

Both CIM-A and CIM-P can also be used together, wherein the memory array calculates partial
results that are later post-processed or accumulated in the peripheral circuit. In such cases, it is
referred to as a CIM architecture.

3 TECHNOLOGY OVERVIEW

In this section, we present an overview of the main memory cells used in various CNM and CIM
systems, encompassing both volatile static random-access memory (SRAM), dynamic random-access
memory (DRAM)) and non-volatile types such as PCM, MRAM, RRAM and FeFETs. These memory
technologies are versatile enough to serve as main memory for data storage and support CNM without
requiring any modification to the memory chips. Additionally, we explore how these memory cells
can be leveraged for in-memory computation, considering technological aspects such as performance,
energy consumption, lifetime, CMOS compatibility, and other relevant factors. Before going into the
individual technologies, let us first explain the different components of the memory subsystem.

6 Asif Ali Khan, Jodo Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

‘ Architecture ’
Also referred to as PIM, PUM, LIM

: . > ™

‘ Compute-outside-memory (COM) ’ ‘ Compute-in-memory (CIM) ’
‘ von-Neumann ’ ‘ Compute-near-memory ‘ CIM-Array (CIM-A) ’ ‘ CIM-Periphery (CIM-P) ’
Also referred to as PNM \g 97 Yg—ﬁ
‘ CIM-A basic ||CIM-A hybrid ‘CIM-P basic |[CIM-P hybrid

Fig. 3. CIM and CNM classification.

3.1 Memory subsystem

The memory subsystem typically consists of a four-level hierarchy, each with its own characteristics
and access time. The fastest and smallest level is the CPU registers, while the slowest one in
the hierarchy is storage devices (HDD/SSD). The CNM/CIM concepts have been proposed at
different levels in the memory hierarchy, e.g., in-cache computing [24], in-DRAM [25], in-storage
computing [26]. However, CNM/CIM at the main memory level have rightly gained more attention
than others.

/ DRAM Chip)
/ Ve
DRAM Rank / /
——— /
,’ Bank Bank / Subarray
Chip / -l
1/ Bank =—— Bank 5
. ~ k]
Chip N S | Cells array
A\ Bank —— Bank \\ 8 Rows x Columns
. \ \ 2
° Q
. \ \ =
\ Bank —p— Bank N
) \ -
Chip \ . Row Buffer
\ Chip I/0 .

Fig. 4. Typical DRAM system organization.

The main memory is also typically organized hierarchically, as shown in Figure 4. The main
components of the hierarchy are memory cells, subarrays, banks, and ranks. A cell is the fundamental
working unit and serves as a building block to form arrays. An array is a 2D grid of cells connected
via word lines and bitlines. A word line is a horizontal line that connects all the memory cells in a
row, while bitlines, on the other hand, connect all cells in a column. Memory cells are placed at the
intersection of word lines and bitlines. The combination of a specific word line and a bit line uniquely
identifies each memory cell. When a particular memory cell needs to be accessed, the corresponding
word line and bit line are activated, allowing data to be read from or written into that cell.

CNM/CIM Landscape 7

3.2 DRAM

DRAM is the most mature and widely used memory technology today. A DRAM cell is composed of
a transistor and a capacitor. When the capacitor is fully charged, it represents the logical value 1,
while a discharged capacitor represents the logical value 0. To access data from the DRAM array, the
memory controller brings a particular row into the row buffer by sending an activate command. A
read command is then issued to read specific column(s) from the row buffer and put them on the bus.

DRAM has scaled nicely for decades and has been used across application domains and systems
ranging from HPC to portable devices. However, it is presently facing several challenges to remain
the dominant technology. The increasing demand for higher capacity has put tremendous pressure
on the DRAM capacitor size to shrink which makes it susceptible to errors. Also, the increase in
capacity is significantly increasing the refresh power budget.

To address the escalating demands for higher bandwidth in modern applications, 3D stacked DRAM
architectures, such as high bandwidth memory (HBM) (see Section 4.1.3), have been proposed. These
architectures consist of stacked DRAM dies atop a logic layer, interconnected through through-silicon
vias (TSVs), resulting in remarkably higher bandwidth. These structures are also employed in a series
of CNM solutions, where the logic layer is used to implement custom logic and perform computations
in closer proximity to the data [27, 28].

From the CIM perspective, the majority of in-DRAM implementations rely on charge sharing,
wherein multiple rows are activated simultaneously. The shared charge is then utilized in a controlled
manner to carry out various logic and data copy operations [25]. Moreover, cleverly manipulating the
memory timing parameters, deviating from standard timings, has also been employed to implement
different logic operations [29].

3.3 SRAM

SRAM is another mature memory technology that provides fast and efficient memory accesses. It is
commonly used in caches, register files, and other high-speed memory applications where speed and
low access latency are critical. An SRAM cell consists of multiple transistors arranged in a specific
configuration to hold one bit of data. The most common configuration of an SRAM cell is a pair of
cross-coupled inverters that are connected in a feedback loop, forming a latch.

@ Forming/Set (+ Forming (++) (b)

)
Reset (++) FT1 Set (+) .
forming/set (D) WG _4-= \Rfm e
Reset () /B N / j
E z I Ho, RRAM) \ /
\
H B G
i Body hE,
]

(a) A sample 6T SRAM cell [30] (b) Metal-oxide RRAM cell [31] (c) FeFET device [32]

Fig. 5. Cell structures of various memory technologies

To read and store data on the cell, the bitline terminals, bitline (BL) and bitline bar (BLB) (see
Fig. 5a), are precharged and discharged, and the wordline(word line (WL)) is activated or deactivated
depending on the values reading/writing from/to the cell.

There have been proposals for in-SRAM computing, especially at the last-level cache, which can
be considerably slower compared to the L1 cache (e.g., by an order of magnitude). Similar to DRAM,
most in-SRAM computing architectures also leverage charge sharing in the bitlines. Specifically,
precharging the bitlines in a controlled manner and activating multiple rows simultaneously enables

8 Asif Ali Khan, Jodo Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

performing logic operations [24]. For bitwise multiplication in SRAM, research has demonstrated
that the amplitude of the input voltage at the WL directly influences the discharge rate of the BLB.
The voltage discharge on BLB, achieved within a specific timeframe, effectively represents a one-bit
multiplication of the data stored in the SRAM cell.

3.4 Phase change memory (PCM)

PCM is resistive memory technology that employs reversible phase changes in materials to store
data. The earliest demonstration of a 256-bit PCM prototype dates back to 1970 [33]. Today, PCM
stands as one of the most extensively researched NVM technologies. A PCM device comprises
a phase-changing material sandwiched between two electrodes (very similar to Fig. 5b), which
transitions between crystalline (low resistance state) and amorphous (high resistance state) phases.
These two resistance states represent binary logic states, i.e., 1 and 0.

Typically, PCM requires a relatively high programming current (>20042A), but this can be mitigated
to less than 10pA by scaling down the device size [10, 34]. As PCM stores data based on resistance,
it can be programmed to encompass more than two resistance states, allowing for multi-level cells to
represent more than a single bit of information. Nevertheless, relying on multiple resistance states
for prolonged periods poses challenges, as the device resistance tends to drift over time, making it
difficult to discern between resistance states.

3.5 Resistive RAM (RRAM)

RRAM is another class of resistive memory technologies that utilizes the resistive switching
phenomenon in metal oxide materials to store data [11]. As shown in Fig. 5b, a typical RRAM cell
comprises a top and a bottom electrode with a thin oxide layer sandwiched in between. To achieve
resistive switching, a high electric field is applied to the RRAM cell, leading to the creation of
oxygen vacancies within the metal oxide layer. This process results in the formation of conductive
filaments, causing the device state to transition from a high resistance to a low resistance (set)
state. To revert to the high resistance (reset) state, the device is subjected to Vresgr, which breaks
the conductive filament, allowing the oxygen ions to migrate back to the bulk. Compared to PCM,
RRAM exhibits several advantages, including higher write endurance (>10°), faster write operations,
larger resistance on-off ratios, and improved scalability prospects [11]. However, ReRAM does suffer
from inconsistent electrical characteristics, meaning it exhibits larger variations in resistance across
different devices [10].

3.6 Magnetic RAM (MRAM)

MRAM store data in nano-scale ferromagnetic elements via magnetic orientation [35]. An MRAM
cell is a magnetic tunnel junction (MTJ) device composed of two ferromagnetic layers, namely
a fixed reference layer and a free layer, separated by an insulating layer. The free layer holds the
data bit, and reading it involves passing an electric current and measuring its resistance. For data
writing into an MRAM cell, various techniques can be used. The most common method is the
spin-transfer-torque (STT), which utilizes spin-polarized electric current to change the free layer’s
magnetic orientation. Spin-orbit-torque (SOT)-MRAM, on the other hand, uses an in-plane current
through the heavy metal layer to generate a spin current that exerts a torque on the magnetization of
the free layer.The relative orientations of the free and fixed layers result in different resistance states.
MRAM exhibits virtually unlimited endurance and acceptable access latency. However, it is faced
with challenges such as a larger cell size and a smaller on/off resistance ratio, limiting an MRAM cell
to store only one bit of data [36].

CNM/CIM Landscape 9

Device SRAM DRAM RRAM PCM STT-MRAM FeFET
Write time 1 - 10ns > 20ns > 10ns ~ 50ns > 10ns ~ 10ns
Read time 1—10ns > 20ns > 10ns > 10ns > 10ns ~ 10ns
Drift No No Weak Yes No No
Write energy (per bit) 1-10fJ 10 — 100f] 0.1-1pJ 100pJ ~ 100fJ > 1f]
Density Low Medium High High Medium High
Endurance > 10 > 1016 >10°-10%8 >10°-10% > 101 > 10"
Retention Low Very Low Medium long Medium long

Table 1. A comparison of the key features across different mainstream CMOS and emerging memristive
technologies [39].

3.7 Ferroelectric Field-Effect Transistor (FeFET)

Since the discovery of ferroelectricity in hafnium oxide, FeFETSs have received considerable attention.
FeFETs are non-volatile three-terminal devices, offering high I, /I, ratios and low read voltage.
Unlike metal-oxide-semiconductor (MOS)-FETs, FeFETs incorporate a ferroelectric oxide layer in
the gate stack, as shown in Figure 5c. The nonvolatility arises from hysteresis due to the coupling
between the ferroelectric and CMOS capacitances (Crg and Ccpros)- The three-terminal structure of
FeFETs enables separate read and write paths. Reading involves sensing the drain-source current,
while writing involves switching the ferroelectric polarization with an appropriate V4 voltage.
Unlike two-terminal devices with variable resistance, FeFETs do not require a drain-source current
during the writing process, leading to low writing energy consumption [37]. There are various CIM
architectures exploiting different properties of FeFETs. For instance, for boolean operations, [37]
proposes precharging the bitlines followed by simultaneous activation of the target rows, and using
differential sense amplifiers to discern the output.

3.8 Comparison and discussion

Table 1 presents a comparison between mainstream and emerging memory devices, discussed in
the preceding sections, with respect to performance, reliability, and energy consumption, among
others. This analysis gives insights into their suitability for different application domains. It is clear
that no single memory device can optimize all metrics. Nonetheless, recent investigations into
machine learning use cases show that different phases of machine learning tasks demand different
memory device properties, potentially offering the opportunity to employ various devices for various
application domains (or tasks within a domain) and achieve the best results [38].

PCM, RRAM, MRAM and FeFET fall under the category of memristive technologies, where
devices can exhibit multiple resistance states. This characteristic has been effectively leveraged to
perform MVM, as depicted in Figure 15a. Although the analog computation may not be entirely
precise, some loss in accuracy is acceptable in many application domains, particularly for machine
learning applications. Numerous CIM architectures have been proposed using this technique to
accelerate neural network models (see Section 4.2).

Figure 6 shows the importance of various device properties for neural network training and inference.
For training, frequent weight updates within the memory are crucial, making memory technologies
like PCM and RRAM, with limited endurance and expensive write operations, poorly suitable for
training acceleration. However, in inference, where operations are predominantly read-based with
minimal writes to the crossbar array, the same technology could outperform others by orders of
magnitude. Similarly, retention for training is the least important but is critical for inference.

The arguments around Figure 6 generally hold true for other metrics and other application domains.
Although machine learning constitutes a significant area, it is not the only domain benefiting from the

10 Asif Ali Khan, Jodo Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

Neural network inference

Neural network training

Endurance Endurance
Write li ity + . ite li i .
rite linearity etention Write linearity + Retention
symmetry symmetry
Analog Analog
i Power o P
capability W capability ower
Parallel Parallel
. Latency . Latency
operation operation
Variabilit Variability Area
Yield Yield

Fig. 6. A spider chart showing the importance of different attributes of the NVM technologies for the neural
network training and inference. More distance from the center means more important [38].

CIM paradigm. Many other data-intensive application domains have also effectively exploited the CIM
paradigm. Figure 7 shows a landscape of CIM applications, emphasizing precision considerations,
computational complexity and memory access requirements. These applications are classified into
three categories based on their precision demands. This data pertains to 2020. Over the past two
years, additional application domains, such as databases, bioinformatics, and solving more complex
algebraic tasks, have gained significant attention as well.

Data accesses
—_—

tow 00O () High

Combinatorial
optimization Deep learning

O training

Spiking neural
networks

Reservoir o
computing Solving linear

and partial

> ' o 5 differential equations
£ Random ! Principal
% numbgr ! I Compressed°°mp°"_e"' | Q
£ generation ' |Deep learning | Sparse Sensing analysis !
S [Unclonable O ' | inference | coding
g functions | | Associative ! O
':-a O ! | memory ! :
2 ' ' : . !
£ i Image | ' ! '
3 filtering and | !
| compression,

Stochastic

computing » Scientific

and security Signal processing, optimization and machine computing
Low degree . . High degree
of precision Computational precision of precision

Fig. 7. The applications landscape for CIM and CNM [17].

4 SELECTED ARCHITECTURES

In this section, we discuss some prevalent CIM and CNM architectures, explaining their programming
models and systems integration. It is important to highlight that there exist COM accelerators
optimized for specific domains, achieving throughput similar to CNM/CIM counterparts, albeit at
the expense of higher energy consumption. These accelerators are beyond the scope of this paper.

CNM/CIM Landscape 11

This section is structured as follows: In Section 4.1, we provide an overview of CNM systems,
starting with academic designs and progressing to commercial CNM systems, including both planar 2D
and stacked DRAM structures. Section 4.2 follows a similar organization for CIM systems employing
various technologies. In Section 4.3, we conduct a comparative analysis of different CIM/CNM
systems, while Section 5.20 outlines the key challenges faced by these innovative architectures.

4.1 CNM architectures

The core principle of compute-near-memory is to perform computations in the memory proximity
by placing processing units (PUs) on/near the memory chip. The first CNM architecture dates back
to the 1990s that aimed at integrating compute units with embedded DRAM on the same chip to
achieve higher bandwidth. However, due to technological limitations and costly fabrication processes,
even the promising initial CNM proposals like IRAM [40], DIVA [41], and FlexRAM [42] never
commercialized.

In recent years, due to the advancements in integration and die-stacking technologies, CNM has
regained interest within both industry and academia. PUs are being integrated at different locations
within memory devices, including within the memory chip as well as outside the memory chip on the
module level, i.e., dual in-line memory module (DIMM). A DIMM typically consists of multiple
memory chips, each consisting of multiple ranks, banks, and subarrays. It is worth noting that some
researchers also classify PUs integrated at the memory controller level as CNM. However, following
the classification and terminology adopted in this report, we categorize it under the COM class.

In the following, we explain some of the common CNM architectures. We start by examining the
planar 2D DRAM-based CNM designs, then transition to discussing the 2.5D and 3D DRAM-based
CNM systems, and ultimately conclude on the NVM-based CNM architectures.

4.1.1 The UPMEM system. UPMEM is a recent commercial near-bank CNM system and is publicly
available [5]. Figure 8 gives a detailed overview of the UPMEM architecture. The memory modules
are divided into PIM-enabled memory and main memory (conventional). The PIM-enabled memory
combines co-processors known as data processing units (DPUs) with conventional DDR4 DRAM on
the same die.

PIM Chip

Main Memory /
/ Control/Status Interface <——>| DDR4 Interface

! A
N — /

/
ooq\)d—b Lﬂ)\“’"’ chip || chip)| chip || chip | chip){ chip /

DISPATCH

FETCH1

rercn; e 24-KB

FETCH3 IRAM]

READOPL (2] =

———— -

5|, ((READOP3 e

FORMAT

ALU E

ALU 64-KB

ALU <> \WRAM > 0

ALUZ

MERGET 3

MERGE2 ()

PIM-enabled Memory

Fig. 8. An overview of the UPMEM architecture [43].

DPUs are 32-bit general-purpose RISC processors, comprising a 64kB SRAM-based scratchpad
working memory known as WRAM, a 24kB SRAM-based instruction memory referred to as IRAM,
and a shared main memory named MRAM, based on DRAM technology. As shown in the figure
(lower left), each DIMM consists of 16 memory chips, with each chip housing 8 banks, and each
bank containing one DPU. The latest UPMEM systems can support up to 20 DIMM:s.

DPU-DPU communication: DPUs in UPMEM can have up to 24 hardware threads called tasklets.

12 Asif Ali Khan, Joao Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

Within the same DPU, tasklets can share data through MRAM and WRAM, however, DPUs can not
communicate with each other directly and must go through the host for any possible data sharing.
Progammability: For programmability, UPMEM offers its own software development kit (SDK)
consisting of an UPMEM compiler and runtime libraries. DPU programs are written in the C language
including specific library calls. The runtime library provides functions for data and instruction
transfers between different memory, e.g., MRAM-IRAM, MRAM-WRAM etc.; executing various
functions on the DPUs; and synchronization (mutex locks, barriers, handshakes, and semaphores).

Although UPMEM claims they have an easily programmable SDK, programming the system
has several challenges. The programmer is responsible for efficient mapping of executions and
load-balancing on thousands of DPUs, managing data transfer, and ensuring coherence of data
between CPU and DPUs.

4.1.2 CNM for MVM in DRAM. McDRAM [44] and MViD [45] (both involving Samsung Electron-
ics) aimed at accelerating machine learning workloads by embedding multiply-accumulate (MAC)
units within the DRAM bank. Similar to UPMEM, both McDRAM and MViD utilize 2D DRAM
(LPDDR in these cases) and incorporate PUs within the memory banks to exploit the higher internal
memory bandwidth. However, unlike UPMEM, these architectures are domain-specific and hence
employ fixed functional units (MACsS) instead of general-purpose programmable cores.

Figure 9 shows the McDRAM architecture along with the three locations (column decoder, bitline
sense amplifier (SA)s, and I/O drivers) where MAC units were employed and evaluated. Each
MCcDRAM chip consists of 4 banks and each bank has four 8-bit MAC units. The multiplication is
performed in parallel by multiplying rows of the matrix with the input vector.

BankA Bank B Bank C Bank D

— ||t —| | |t — || |frm—
— || = || =

[] ey 8 [F [J[7] e | [F [T [] ey [T 7][] ey

Column - Column — Column - Column —
Decoder Decoder Decoder Decoder
| oo [NENN

Fig. 9. The McDRAM architecture with three possible locations for MAC units [44].

Programmability: McDRAM is a fixed-function accelerator and offers a single interface function
(matmul) that triggers the device driver to configure the control registers of the memory controller.It
operates in two modes, memory and compute modes, determined by a configuration register. In
compute mode, McDRAM performs MVM tasks. For the management of MVM within compute
mode, it introduces six novel DRAM commands that leverage existing DRAM I/O signals, rendering
no modifications to DRAM I/O signals. McDRAM, a fixed-function accelerator, employs a single
interface function (matmul) triggering the device driver to configure memory controller control

CNM/CIM Landscape 13

registers. It operates in two modes, memory and compute, determined by a configuration register.
In compute mode, McDRAM performs MVM introducing six novel DRAM commands for MVM
management without modifying existing DRAM I/O signals.

Ban ank B ~IER s 12 256-bitRD data GIOSA Data /O
S ’ CcMD/
Ll 8 oorn S| [oam mx-] -
= 2 Cell
t = (=] /
= < Ba“ a" S| < I Index Decoder (Parallel Prefix S Input
2 2 21SIEEE Command ndex Decoder (Parallel Prefix Sum) e
3 | 8 = 3 & Y Vector
g = I | £ y Generator SRAM
e 2 i
5 § ﬁ.ﬂ g - 6 . T
. GIO SA MDY/ MAC out
put
Bank Bank Bank Ban Addr Vector aa
__________________ Adder Tree SRAM

Fig. 10. The MViD architecture [45] where each bank has 16 MAC units.

The MViD architecture depicted in Figure 10 is similar to the McDRAM design and is specifically
optimized for edge devices. Much like McDRAM, MViD incorporates MAC units within the DRAM
I/O drivers to capitalize on the internal bandwidth of the DRAM. However, unlike McDRAM, MViD
introduces a partitioning of memory banks into two categories: MVM banks that are equipped for
MAC units and two SRAM structures to hold the input and output vectors and non-MVM banks
(traditional). This division enables concurrent access to both types, meaning that multiplication
operations in MVM banks can occur simultaneously with the CPU accesses to the non-MVM banks.

4.1.3 Samsung’s CNM systems. Samsung is probably ahead of everyone in the race for commercial
CNM systems. In the following, we discuss two of their recent promising (and complete) solutions.

PIM-HBM: Samsung has recently introduced a CNM architecture referred to as Function-in-Memory
DRAM (FIMDRAM)[6] or PIM-HBM[7]. It incorporates 16 single-instruction multiple-data (SIMD)
engines within the memory banks, enabling bank-level parallelism. As reported in [7], their design
does not disrupt crucial elements on the memory side, such as the sub-array and bank in conventional
DRAM, making its integration seamless and straightforward. Importantly, it does not require any
modifications to contemporary commercial processor components, including DRAM controllers. It is
designed for host processors to manage PIM operations via standard DRAM interfaces. This feature
allows for a straightforward substitution of existing JEDEC-compliant DRAM with PIM-DRAM
across various systems.

From

/,' From \LReglsters
/ 10SA

, y
! (cel) V

HBM DRAM Die - Bank
BANK BANK

PIM PIM
UNIT UNIT

.

L]

.
Result Bus

Write Drivers
BANK BANK

1/0 Sense Amps

TSVs & Periphery
BANK BANK

w

Registers Driver
””””” (Cell)

(c)

Fig. 11. Samsung’s PIM-HBM (a) HBM die organization (b) Bank coupled with a PIM unit (c) PIM unit data
path [7].

While Samsung reports that their design is compatible with any DRAM family, they have showcased
its functionality using the 2.5D high bandwidth memory (HBM) DRAM. Figure 11 provides a

14 Asif Ali Khan, Joao Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

high-level view of this architecture. Each bank comprises 16 SIMD floating-point units (FPUs),
with each FPU consisting of a 16-bit floating-point adder and a 16-bit floating-point multiplier.
Furthermore, each FPU is equipped with data registers (GRFs), control and instruction registers
(CRF, SRF), and an internal control unit. The internal control unit orchestrates operation sequences
without necessitating modifications to the memory controller. When operating in PIM mode, the PIM
execution units within all banks simultaneously respond to a standard DRAM column (Read or Write)
command initiated by the host processor and execute a wide SIMD operation with deterministic
latency in a lock-step manner.

Programmability: PIM-HBM comes with an instruction set architecture (ISA), a software stack,
and a specific programming model. The software stack presents a native execution path that does not
require any modifications to the input code. The framework takes the high-level representation of
an application and transforms it into device code. Furthermore, it offers a direct execution path that
permits direct invocation of various function calls using the “PIM custom op*. The PIM runtime
includes a collection of modules responsible for tasks like operations offloading, memory allocation,
and execution on the FPUs.

HBM-PIM is a commercial accelerator and, as per, Samsung is already used by companies. Here
is an excerpt from Samsung’s newsroom:

“Xilinx has been collaborating with Samsung Electronics to enable high-performance solutions
for data center, networking, and real-time signal processing applications starting with the Virtex
UltraScale+ HBM family, and recently introduced our new and exciting Versal HBM series products,”
said Arun Varadarajan Rajagopal, senior director, Product Planning at Xilinx, Inc. “We are delighted
to continue this collaboration with Samsung as we help to evaluate HBM-PIM systems for their
potential to achieve major performance and energy-efficiency gains in Al applications.”

AxXDIMM (by Samsung-Facebook:) Samsung is also working on the development of an FPGA-
enabled CNM platform named AxDIMM. In collaboration with Facebook, this solution has showcased
its effectiveness in a personalized recommender system. As shown in Figure 12a, the CNM architecture
(RANK) is the same as Samsung’s HBM-PIM, but the controlling unit is FPGA that starts the
execution, maps computations to the RANK, and gets back the results. Like the HBM-PIM, AxXDIMM
has a complete software stack that allows programming the architecture without changing the input
code or manually writing code using AxXDIMM python API.

; phol (Tpho) [
NEC || (TN T N
__| =N
Standard DIMM Interface [PU ‘ [PU l PU ‘ PU ‘
¥ % %
Rank-0.NMP 1
= Non-Acceleration Mode w -
S = FOAF
sof [[3 Acceleration Mode | 3
17| £ | [mstaur] [oec] [cvoeen] (S | Process Unit (PU)
b3 e
S [Cooer || Throughput Area
g 32 GFLOPS 2
Rank-1.NMP (1CHex Sobytey | 0-19mm
(a) Samsung-Facebook AxDIMM hard- (b) AiM architecture [9].

ware module and architecture [46]

Fig. 12. PUMA tile and core architectures [47].

CNM/CIM Landscape 15

For this product, Samsung also seems to be in discussion with SAP HANA. Here is another excerpt
from the newsroom:

“SAP has been continuously collaborating with Samsung on their new and emerging memory
technologies to deliver optimal performance on SAP HANA and help database acceleration,” said
Oliver Rebholz, head of HANA core research & innovation at SAP. “Based on performance projections
and potential integration scenarios, we expect significant performance improvements for in-memory
database management system (IMDBMS) and higher energy efficiency via disaggregated computing
on AXDIMM. SAP is looking to continue its collaboration with Samsung in this area”.

4.1.4 SK hynix’s accelerator-in-memory. SK hynix’s accelerator-in-memory (AiM) is another
CNM system that targets the machine learning application domain [8, 9]. As stated in [9], “Samsung’s
FIMDRAM is near commercialization, but the required HBM technology may prevent it from being
applied to other applications due to its high cost”. AiM fundamentally follows a very similar design
approach to Samsung’s FIMDRAM but utilizes GDDR6 instead.

Figure 12b provides an overview of the AiM architecture. As depicted, each bank is equipped with
a processing unit (PU) that executes a MAC operation using 16 multiplier units and an adder tree. The
adder tree can be deactivated for operations not requiring additions. Similar to the FIMDRAM design,
pairs of banks can establish direct communication. For inter-group communication, an internal 2KB
SRAM structure within the periphery facilitates the process.

Although the programming model is not explicitly explained, the presented set of commands in
AiM implies an interface enabling interaction with the device for various operations. Some of these
operations are particularly interesting, such as the ability to perform computations within banks
of different granularities (1, 4, 16) and data movement functions that can be utilized to implement
row-cloning within DRAM.

4.1.5 AxRAM. AxRAM targets optimizing for the off-chip memory communication bottleneck in
GPUs by integrating approximate MAC units in the DRAM [48]. The fundamental idea is to exploit
the inherent approximability of numerous GPU applications and perform approximate calculations
directly within the memory banks, thereby reducing data movement and energy consumption.
AxRAM leverages the concept of neural transformation, a technique that accelerates a wide range
of applications by approximating specific sections of GPU code and transforming them into a
neural representation composed primarily of MAC and look-up table (LUT) operations for nonlinear
function calculation. The multiplications in the MAC operations are further approximated with
limited iterations of shift-add and LUT accesses. These approximate units are connected to the wide
data lines that connect the DRAM banks to the global I/0O, keeping the banks and memory column
unchanged.

Figure 13 shows a sample example where the GPU code is transformed into MAC and lookup
operations. Once such patterns are identified and transformed, they are offloaded to the in-DRAM
accelerator. The new instructions that invoke and configure the in-DRAM accelerators are added
to the GPU’s ISA and are exposed to the compiler. As for the flow of execution, initially, all data
is assumed to be in one memory chip. The GPU starts normal execution, and for the identified
approximate regions, the GPU warps send an initiation request to the on-chip memory controller. The
additional logic in the memory controller first sends an invalid signal to the on-chip caches (to ensure
data consistency) and subsequently drives the in-DRAM accelerator to perform the computations and
store the results in the designated location. To check whether the execution is completed, the memory
controller periodically checks the memory-mapped mode register of the DRAM, which is updated by
the accelerator. Once the controller detects that this register is set, it signals the GPU that execution is
finalized, allowing the GPU to proceed with precise execution of the subsequent instructions.

16 Asif Ali Khan, Jodo Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

This work targets data transfer

Bank X
ishort r = pixel[i][0]; S
short g = pixel i][1]: | |Accelerator | Accelerator ;
ishort b = pixel[i][2];
lshort result = 0; | Bank |4
#pragma(begin_approx, | I-E
“min_max”)
mi = __min(r, __min(g, b));
ma=__max(r, _max(g, b)
result = ((ma + mi) i
>127 *2)? 25! i
i#tpragma(end_approx, i Bank Bank =
i, i) i g
out[i] = result; i [
Neural Transformation converts complex m i Bank J| Bank || .2
region of code to simple operations faccelerator| Accelerator o
(i.e., multiplication, addition, and sigmoid) Accelerated GPU Unmodified DRAM

[Prior work targets data processing |

Fig. 13. Transformation of complex code into simple operations (left) and the AxRAM architecture compared
to state-of-the-art (right) [48].

4.1.6 CNM systems based on 3D-stacked DRAM. All the CNM architectures discussed so far
(except FIMDRAM) are based on planar 2D DRAM. However, the resurgence in CNM systems
is also primarily attributed to HBM and HMC technologies that seamlessly combine logic and
memory within the same package. There is a series of proposals for CNM systems leveraging these
technologies. In the following, we discuss some of the prominent architectures.

TESSERACT [49] targets accelerating graph-based applications. Their design comprises a host
processor and an HMC with multiple vaults, each housing an out-of-order processor. These processors
exclusively access their local data partition, while inter-communication is achieved through a message-
passing protocol. The host processor, however, can access the complete address space of the HMC.
To capitalize on the substantial memory bandwidth available, they introduce prefetching mechanisms.
TOP-PIM [50] is an architecture that proposes an accelerated processing unit (APU). Each APU
integrates a GPU and a CPU on the same silicon die. These APUs are linked through high-speed
serial connections to several 3D-stacked memory modules. APUs are general-purpose and support a
series of applications ranging from graph processing to fluid and structure dynamics. The architecture
allows code portability and easy programmability.

Active memory cube (AMC) [51] is also built upon HMC and proposes “lanes” in the HMC vault.
Each AMC lane consists of a register file, a computational unit, and a load/store unit to support
memory accesses. Communication among AMC:s is only possible via the host processor. AMC also
offers a compiler based on OpenMP for C/C++ and FORTRAN.

Heterogeneous reconfigurable logic (HRL) [52] leverages the logic layer in the 3D stacked HMC
to implement heterogeneous coarse-grained (CGRAs) and fine-grained (FPGAs) logic blocks. The
architecture separates routing networks for control and data signals, employing specialized units
to efficiently handle branch operations and non-uniform data layouts commonly found in analytics
workloads.

4.2 CIM architectures

Much like CNM, the concept of CIM systems is not entirely novel; however, it has gained significant
momentum due to breakthroughs in various NVM devices over the past decade. Figure 14 shows
a partial landscape of CIM systems, along with a corresponding timeline. Most of the depicted
CIM accelerators originate from academia and are not taped out. However, in recent years, several
semiconductor industry giants, including Intel, Samsung, TSMC, GlobalFoundries, and IBM, have
invested in developing their own CIM prototypes, mostly focused on the machine learning case. IBM,

CNM/CIM Landscape 17

in particular, stands out among others when it comes to the development of CIM systems for different
use cases.

am
CRS MPU PLIM ReVAMP

CIM-A //
STT-Cim
Pinatubo CIMA
ISAAC Ambit DPP
ReAP PRIME S-AP R-AP
/.
CIM-P // o_._._o D)—o
ProPRAM
DaDianNao HBM HIVE
VIRAM FlexRAM M DIVA HMC D-AP DRAMA AMC ReGP
COM-N o—o0 /[—o——0—Q—©

Year —o0—o0—o0—0—0—Oo0———[/——O0—0—0—0—0—0—0—
1997 1998 1999 2000 2001 2002 2012 2013 2014 2015 2016 2017 2018

Fig. 14. A partial timeline of the evolution of CIM systems (data until 2018) [28]. The radius of the circle is
proportional to the amount of papers published that year.

In this section, we overview some of the prominent CIM designs from academia and industry.
However, before going into the details of individual CIM designs, we first introduce circuits that are
typically used as basic CIM primitives in these architectures.

4.2.1 CIM primitives. Each of the CIM architectures discussed in the following sections is either
based on a crossbar, content-addressable-memory, or a boolean and arithmetic logic unit. In the
following, we explain all three of them.

Crossbar: A crossbar is a CIM configuration in which each input connects to every output through
cross-points, comprising memory cells and selectors. Figure 15a shows a technology-independent
crossbar configuration. As we will see in the following sections, crossbars are particularly useful for
the machine learning domain as they can compute MVM in constant time.

CAM: content-addressable-memory (CAM) is associative memory that enables parallel searches
for a given query (input) across all stored content within a CAM array. CAMs are used in pattern
matching and search operations from various application domains including databases, networking,
and machine learning [53]. Figure 15c shows a technology-independent 3 x 3 CAM structure.
Boolean and arithmetic logic in CIM: In this class of CIM, the CIM array facilitates a specific
set of general operations, such as Boolean logic and arithmetic, to be executed using customized
peripheral circuits integrated within the random-access memory (RAM). The operands need to be
stored in different rows of an array in a column-aligned fashion where each column represents a bit
position. For a CIM operation, multiple rows are typically activated simultaneously, and the output is
sensed and inferred by the peripherical circuitry [23, 54]. Figure 15b shows a technology-independent
structure implementing boolean logic.

4.2.2 [SAAC (by Hewlett Packard Enterprise). In-situ analog arithmetic in crossbars (ISAAC) [22] is
among the first CIM accelerators with a complete design targeting convolutional neural network (CNN)
in RRAM. As shown in Figure 16, ISAAC’s architecture consists of multiple interconnected tiles via a
concentrated-mesh (c-mesh) network. Each tile consists of 12 in-situ multiply-and-accumulate (IMA)
units, a shift-and-add (S&A) unit, two sigmoid units, one max-pooling unit, an embedded DRAM
(eDRAM) buffer for input data storage and an output register (OR) to accumulate (partial) results. Each

18 Asif Ali Khan, Jodo Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

®

=2
=2
®
2

BL v,

vz

wL
1
SLT, SLFy SIT, SLF, - STy SLFy

Y R

\%\ \%\ ’z\\%\ ML'»{ = I:_:{ CAMvoeII l—_<_ CAM cell I:?
s :
B o

5

V3

8

Homea 1 Tomenr |4 bomen][4

vy : scl;

\%\ ‘ ;. \%\ l[BL :ili ML~>+ CAM‘ceH l—_<_>_—i CAM cell l—_< »_—{ CAM.cell I:I

(a) CIM crossbar. (b) CIM boolean logic. (c) CIM CAM structure.

5
p
& ‘ol & &

@

B
<

Il

Nk

=

&

¥,

Fig. 15. Fundamental CIM primitives [53].

IMA integrates its own input register (IR), output register, S&A units, and eight 128 x 128 resistive
crossbar arrays, also abbreviated XB or XBars, that share analog-to-digital converters (ADCs). Each
XBar performs analog MVM (see Figure 15a) and is also equipped with a digital-to-analog converter
(DAC) and an S&H circuitry. Communication within a tile is facilitated by a 32-bit inter-tile link.

EXTERNALIO INTERFACE. "

CHIP (NODE) b o |
rrrrrrrrrrrrrrrrrrrrrrrrrrrr ~ /" In-Situ Multiply Accumulate [OR]|
IR —Input Register | Py
OR - Output Register : 2
MP —Max Pool Unit =)
S+A - Shift and Add

G —Sigmoid Unit

XB —Memristor Crossbar
S+H —Sample and Hold
DAC - Digital to Analog
ADC - Analog to Digital

/" DAC

Fig. 16. ISAAC architecture hierarchy [22].

The ISAAC design uses dataflow pipelining to optimize IMA unit utilization and reduce buffering
requirements. Depending on the network’s size, each CNN layer is mapped to one or multiple IMAs
or tiles. Initially, input data is acquired through an I/O connection and stored within a tile’s eEDRAM
buffer. Before being fed to ReRAM XBars within each IMA, the data goes through DACs. Once
processed by XBars, the generated feature maps are converted back to digital form and forwarded
to max-pooling and activation units. The outcome of the NN layer is then accumulated within the
S&A and OR units and subsequently written to a new eDRAM buffer (for the following layer). The
depth of the pipeline corresponds to the depth of the neural network, which presents challenges when
training deep neural networks (DNNs). Thus, ISAAC is specifically designed for inference and is not
used for training. ISAAC has no mention of the design tools and programming interface.

4.2.3 PUMA (by Hewlett Packard Enterprise). PUMA (programmable ultra-efficient memristor-
based accelerator) is a generalization of memristive crossbars to accelerate a range of ML inference
workloads [47]. PUMA’s microarchitecture techniques exposed via dedicated ISA ensure the efficiency
of in-memory computing and analog circuitry while providing a high degree of programmability. The

CNM/CIM Landscape 19

architecture is organized into three hierarchy levels: cores, tiles, and nodes. Nodes are connected and
communicate via a chip-to-chip network. Each individual node consists of tiles that are connected via
an on-chip network, where each tile comprises cores that communicate via shared memory, as shown
in Figure 17a. A PUMA'’s core consists of its own memory and functional units, including the XBar
array, referred to as the MVM unit (MVMU), see Figure 17b.

MVMU Matrix vector multiplication unit
DAC Digital to analog converter
ADC Analog to digital converter
VFU Vector functional unit

SFU Scalar functional unit
MU Memory unit

Stall/Kill

1 Operand Sleer Unit I

Shared Memory
[mlrucuon
m . - E t
Data Attribute -4 X)
_________________________________ Buffer £ Register File . - . MU
D ‘g (ROM-Embedded RAM)
| 7 i Instruction || E | |2 VFU to/from
- a i Memory cl]2 I
Router s D| |8 TE
Receive Buffer E Pipelined MVMU
L | Xbarln DAC XbarOut
! I ! Registers (G Registers
= M| ——————— = . i L -
CORE 0 CORE 1 CORE 2 COREN FETCH EXECUTE
(a) PUMA'’s tile architecture (b) PUMA’s core architecture

Fig. 17. PUMA tile and core architectures [47].

Unlike most other CIM architectures, which are data parallel, PUMA is a spatial architecture
where distinct instructions are executed by each core or tile. Since manually writing code for such
architectures is extremely difficult, particularly when they have thousands of cores, PUMA has a
runtime compiler implemented as a C++ library. The compiler takes the high-level input code and
extracts a dataflow graph from it. The graph is then divided into subgraphs, considering the sizes
of MVMUs, and hierarchically assigned to MVMU s, cores, and tiles. The subgraph execution is
carefully scheduled to ensure effective resource utilization while avoiding potential deadlocks. Given
the constraint of serial read and write operations in RRAM, PUMA exclusively supports the ML
inference. However, to facilitate training, PUMA has been repurposed in a follow-up work named
PANTHER [55].

4.2.4 Pinatubo: Accelerating bulk bitwise logic operation. Pinatubo is a memristor-based archi-
tecture that harnesses data-level parallelism to conduct bulk bitwise operations [23]. Unlike the
crossbar configurations, it performs computations in the digital domain by modifying the SAs. The
system architecture is similar to a typical Von Neumann architecture that has a processor equipped
with caches and a non-volatile main memory. Pinatubo then exploits the physical attributes of the
NVM-based main memory and modifies the SAs to support it. The main idea is the operands are
stored in different rows but the same columns in an array, the rows are activated in parallel and the
accumulated current in the bitline is compared to a reference level in the SAs. For different logic
gates, the memory controller changes the reference levels in the SAs to different stats.

The Pinatubo’s main memory structure is illustrated in Figure 18, comprising multiple banks
divided into banks and mats. For operands within the same mat, the modified SAs work out of the box
and can perform bitwise vector operations. For operations where the data is spread across different
mats, whether within the same bank or not, additional logic gates are used for execution (within the
global data line or global I/0). The architecture supports only logic operations.

For programmability, Pinatubo presents a software infrastructure containing both the programming
model and runtime support components. The programming model offers two functions to allocate

20 Asif Ali Khan, Jodo Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

(a) Chip (inter-bank op.) (b) Bank (inter-subarray op.) (c) Mat (intra-subarray op.)

[; v g -
S Subarrays 59 st h BL

bl © T © i

€2 o I S - Al -

2183 G at ES) il i 7o

S| = = T i e -

1 = § | Row Buffer ~ ((SA (w/ Intra-sub operations))

O) (Inter-sub operations) ‘ (WD (w/ in-place update))

Fig. 18. Pinatubo architecture showing chip, bank and mat [23].

bit-vectors and perform bitwise operations. The runtime support facet encompasses adjustments to
the C/C++ runtime library and the operating system (OS) and the development of a dynamic linked
driver library. The runtime library ensures that bit-vectors are allocated to separate memory rows
while the OS equipped with PIM-aware memory management, ensures intelligent invocation of the
operations.

4.2.5 PRIME. PRIME [21] is another RRAM-based analog CIM accelerator. The architecture
comprises multiple banks where each bank integrates eight subarrays (chips) which are further
(logically) split into memory (Mem) units, two full function (FF) units, and one buffer. FFs can
function conventionally as memory or in an NN computation mode, controlled by the PRIME
controller. A typical FF unit is 256 x 256 RRAM cells, with 6-bit reconfigurable local SAs reading
their outputs. During computation mode, RRAM resolution is 4-bit multi-level cell (MLC), shifting
to single-level cell (SLC) in memory mode. Distinct crossbar arrays are utilized for storing positive
and negative weights. The input to the mat comes from a 3-bit fixed point signal originating from a
wordline decoder and driver (WDD). Analog subtraction and sigmoid functions within the NN are
implemented in the modified column multiplexers within the RRAM arrays.

Stage 1: Program | Modified Code:|"

. | Stage 2: Compile Stage 3: Execute

Map_Topology (); i antic Weishts Manpine i

C)! Program_Weight (); ; 'f?| Synaptic Weights Mapping ‘ i

Tasrget (Ceilz Config_Datapath (); 7 |Opt. I: NN Map ‘ S N ReRAM i
ERmENY Run(input_data); Opt. II: Data Place &> | Datapath Config (Table 2 left)} ‘ .
3 Post_Proc(); Controller |

H g\ Data Flow Ctrl (Table 2 riUhI)‘ H
J NN param. file| <3 [Offline Training] I ‘ ik Subamay

Fig. 19. PRIME: Source code to execution [21].

The execution of an neural-network (NN) on PRIME involves three stages. Firstly, the NN is mapped
onto FF subarrays, and synaptic weights are programmed into ReRAM cells. In the optimization
stage, depending on the NN size, mapping could occur in a single bank or across multiple banks.
These first two stages are executed by the CPU. Subsequently, a series of generated instructions are
transmitted to the PRIME controller in RRAM banks to perform computations. The presence of
latches and OR gates facilitates pipelined computation within PRIME.

As shown in Figure 19, PRIME also comes with a compiler and an API, exposing device capabilities
as function calls. The process from code to execution involves programming (coding), compiling
(code optimization), and code execution. PRIME offers application programming interfaces (APIs)
that empower developers to map NN topologies onto FFs and configure data paths etc.

4.2.6 Pipelayer. Pipelayer is another RRAM-based accelerator for CNNs that supports both training
and inference [56]. The overall architecture of PipeLayer, shown in Figure 20 features RRAM
crossbars, the spike Driver block to encode inputs as spikes and get rid of DACs, and integration

CNM/CIM Landscape 21

and fire components that eliminate ADCs. In write mode, the spike driver updates RRAM array
weights with a 4-bit resolution. Within the cell, data processing occurs across morphable and memory
subarrays, where memory subarrays are conventional memory arrays while morphable arrays can be
configured in both compute and memory modes. Pipelayer leverages these morphable subarrays for
different purposes in training and inference.

£
1 1 1
15 &F 15 &F 1[5
5 o |[2[Mo) ||E]
Q| Subarray J{|Q| Subarray j}|Q]
_ [Activation I—:|Activation| -
|) ST) M R
2| (32 vop |2 Mo)||2
S| |8 “{A| Subarray JJ{A| Subarray }/|[8
] - — i — - —
= S — T T
s 1&F = I&E_©O)-|[=
512 g 112
§ |8 Morp k= Morp | E
G| |2 Subarray J{| Q| Subarray || |()
[Activation ——— Activatidc) -
i § 1&F | § 1&F l §
B Morp = Morp 1B
“{A| Subarray |||P| Subarray }:||RQ
= - — - — - —
L:\ l Connection @ -
§ emory Subarray ‘
— Global 10 Row Buffer | Contro]le |
Data H

Fig. 20. An overview of the Pipelayer architecture [56].

PipeLayer allows interactive configuration of the system on a per-layer basis. It provides an API
that has functions for different operations e.g., bidirectional transfer of data between the CPU main
memory and PipeLayer, the topology_set function, where the number of compute groups can be
specified by the programmer, the weight_load function to load either pre-trained weights during
testing or initial weights during training into the arrays. Other functions include pipeline and mode
set functions for the morphable subarrays.

There are many other RRAM-based analog and digital CIM accelerators. Some other common ones
that are mostly taped-out and not discussed here include: AtomLayer [57], RIMAC[58], FORM [59],
RRAMs for pattern recognition [60], RRAM accelerator for BNNs (ISSCC, 65 nm) [61], RRAM for
edge processors (ISSCC, 55 nm) [62], analog RRAM with fully parallel MAC and extremely high
TOPS/W (ISSCC, 130 nm but large array) [63].

4.2.7 In-DRAM computing. Ambit [25] is a DRAM-based CIM accelerator that, unlike all previous
systems, leverages the analog capabilities of current DRAM technology for executing bulk bitwise
operations. Ambit mainly comprises two components. First, Ambit-AND-OR implements friple
row activation (TRA) in conventional DRAM. Like memristors, the idea is to activate three rows
in parallel and leverage the charge-sharing and charge accumulation principle. TRA produces a
bitwise majority function. Controlling the initial state of one of the three rows enable performing
AND and OR operation. The second component of Ambit is Ambit-NOT, which uses the inverters in
the DRAM SAs to implement the logic NOT operation. The basic components are then extended to
implement other logic operations and accelerate bulk bitwise operations in multiple applications.
With 8 DRAM banks, Ambit demonstrates a substantial improvement in bulk bitwise operation
throughput compared to an Intel Skylake processor and the NVIDIA GTX 745 GPU.

22 Asif Ali Khan, Joao Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

A follow-up work on the bulk bitwise logic in DRAM, ComputeDRAM [29] demonstrated that by
deliberately violating timing parameters between activation commands, certain existing off-the-shelf
DRAM chips can implement the TRA operation of Ambit. This indicates that certain real-world
off-the-shelf DRAM chips, despite not being intended for Ambit operations, can indeed perform
in-DRAM AND and OR operations. This also suggests that the concepts introduced in Ambit might
not be too far from practical implementation. If existing DRAM chips can perform such operations to
some extent, then chips explicitly designed for such functions could potentially be even more capable.

4.2.8 In-SRAM computing. Neural Cache [64] is an SRAM-based CIM accelerator primarily
targeting CNNs. The core operations of Neural Cache are bitwise AND and NOR operations, which
are executed by simultaneously activating multiple rows (charge sharing). It repurposes the cache
memory by modifying the peripheral circuitry to support operations such as convolution, pooling,
quantization, and fully-connected layers, all performed at an 8-bit data precision. It is also capable of
performing bit-serial operations like addition, subtraction, multiplication, comparison, search, and
copy for larger data, utilizing carry latches linked to SAs. A transpose memory unit is introduced that
facilitates the reorganization of data into bit-serial format within the memory when needed.

IMAC [30] is another SRAM-based CIM accelerator that uses the precharge circuit to perform
multi-bit analog multiplication by encoding the bit significance in the pulse width of pre-charge pulse.
IMAC also requires DAC/ADC converters to facilitate the conversion between digital and analog
forms. There are many other instances of SRAM-based CIM designs, some even taped-out [65-68].

4.2.9 In-MRAM computing. In NVMs, Magnetic RAM (MRAM) is probably the most mature
memory technology that is commercially available and is already used in many embedded devices (see
Section 3.6). Therefore, it has also been intensively investigated in the CIM context and computing
approaches implementing in-MRAM basic boolean logic operations and more complex arithmetic
functions have been showcased. Like all other technologies, the basic CIM methods include bit-cell
modification, reference adaptation, and in-memory analog computation.

| Column Decoder (W/R/L)

U U
=
wwLl [35 ~
= i3 2
_ m1 2l./= =
- L B | S D
~ - ~N
3 2 -
; 3 g - 10000 .
& — Rar
5 [RWLT] I
= SL1 oeeeesmemecfressmemsssssssssssssesesees E = 5000 retM
=] i
3l . WWL2 w
D t " '5 "I 2 N Ib 18
£ \2 0 n o2)
E E m2 ‘,. E 10000
= sl T 2 Hi::t‘r.‘.'.,"
: reLAND Ry/Rp, (0,0)
T MTJ T | 5000 P
| | L RWIL2 1
[T > =L

se(mV)

Fig. 21. A typical SOT-MRAM subarray architecture for in-place logic [69].

Figure 21 shows a typical subarray architecture of an in-MRAM CIM [69]. The important difference
here compared to already known aspects is that it has separate read and write bit and word lines and
three reference resistance states in the sensing circuity (RAND/RM/ROR). RM is used to perform

CNM/CIM Landscape 23

normal memory operations, while RAND and ROR, as the names suggest, are used to implement
AND and OR operations, respectively.

Similar to other technologies, the boolean logic is implemented with charge-sharing, and MAC is
implemented in the analog domain with current accumulation. Some prominent MRAM-based CIM
designs include analog MACs for TRA inference [70], MRAM-CIM for BNNs [71], and MRAM
crossbar [72].

4.2.10 CIMusing FeFETs. FeFeTs have also been shown to implement in-place logic gates, addition,
and content-addressable memories (CAMs). Notably, these logic operations can also be implemented
with a single FeFET cell. For instance, if one operand is stored in a cell (or a set of cells), the other
operand can be applied as input to perform logic operation [73], akin to the working principle of
crossbars. Further, solutions proposing activating multiple rows and leveraging the bitline’s charge
sharing (as in other memory technology) have also been presented [37].

FeFETs have received particular interest in CAM designs. CAMs are associative memories that
can perform parallel searches for a query across all stored contents within an array. FeFeTs have
been used to implement different types of CAMs for exact-search operations, approximate search
operations, range-based search operations, or a combination of them [74, 75].

4.2.11 Latest industrial chips. In the previous sections, we have extensively discussed a variety of
notable CIM and CNM solutions employing different technologies. While a few of these systems
have been developed in collaboration with industry partners and a subset has undergone the tape-out
process, the majority of these accelerators originate from academia. In this section, we specifically
present CIM systems originating from the industrial sector in the last couple of years. Note that
these CIM systems also primarily show prototypes showcasing various research outcomes, but they
indicate their potential realization in the near future.

IBM’s PCM-based accelerators: For more than five years, IBM has been using its PCM device to
do in-place operations for different use cases. Initially, they were working with a reservoir of devices
(millions of them) and implementing the peripheral circuitry and additional CMOS logic in an FPGA.
Their research has progressed to consolidate all components onto a single chip, as exemplified by
HERMES, a core composed of 256x256 PCM array with ADCs, a local digital processing unit, and
additional peripheries [76]. The core effectively executes a fully parallel 256x256 analog MVM,
where each 8T4R unit cell encodes a positive/negative weight, with simultaneous handling of 256
8-bit digital inputs/outputs. Positive weights are encoded by combining the conductance of two PCM
devices, while negative weights are represented by the other two PCMs within the unit cell.

This year, IBM announced a newer 64-core CIM chip designed and fabricated in 14-nm CMOS
technology integrated with PCM [77]. The fully integrated chip comprises 64 cores, each with a
size of 256x256, connected through an on-chip communication network. It reportedly achieves an
unparalleled maximal throughput of 63.1 TOPS at an energy efficiency of 9.76 TOPS/W for 8-bit
input/output MVMs.

Samsung’s MRAM crossbar: Crossbar-based analog MVM is well-explored in RRAM and PCM
technologies. However, implementing MRAM-based crossbars is challenging due to the inherent low
resistance of these devices, which could lead to significant power consumption. In 2022, Samsung
presented a 64x64 MRAM crossbar array to address the low-resistance issue by employing an

24 Asif Ali Khan, Joao Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

architecture that uses resistance summation (instead of current summation) for analog multiply-
accumulate operations [72]. Compared to the IBM HERMES cores, Samsung’s crossbar is significantly
less sophisticates and limited in scale.

TSMC’s in-SRAM accelerator: While other SRAM-based CIM chips exist, our focus is on the
TSMC macro structure using standard 8T cells [78] due to its better noise margin, ensuring stable
activation for multiple rows operations in the CIM mode, albeit with approximately 30% increased

area.

RBL[3] RBL[2) RBL[1] RBL[0]
RIW Interface A [Counter® RWL[63]
’ WL Driver
7,

/ 8T 8T
— T [RWL(62) [er]
T T :
Pl e)i
H
;

H
H
Counter & RWLI)

R =T
v]

Counter &

4-bit RWL Counters
RWL Drivers

I
Array i WL Driver t
I
- 8T 8T 8T 8T
P i ELygEl
H
— 9 Bl Using number of RWLY ooeenee)ecocencb e el
I pulses to realize ;' Compehsation Cap.]
_ A multi-bit input H '
H P :|-c:E°/"* s~c:|:°/°- 7e 9 rcf"'] :
ac T i

) T — 5S¢ S T]
84 4-bit Compensation Caps, |: s S S G s S i
Inputs ¢ — R ' Ci Caps|
H H R H " A o .
AbitFlashADCs | || | o e [|1 [FGLT] #SL7] #oL™] oL
v ' : 5 e AT ac
E PR [T T T T3
: coseass o] = “’L

[15 Sense Amplifiers |

16 4-bit
Outputs

4-bit Flash ADC Block

NOUT15(3:0]
NOUT14{3:0]
NOUT1[3:0]

S To!1) (1)

NOUTO[3:0]

Fig. 22. TSMC’s CIM SRAM structure [78].

The proposed design shown in Figure 22 has a 64x64 SRAM array and enables parallel computations
of the multiply-and-average (MAV) operations. In a single cycle, the MAV computation of 64 4-bit
inputs with 16 4-bit weight can be completed. The 4-bit input is represented by the number of read
word line pulses which is precisely controlled by 4-bit digital counters. The 4-bit weight is achieved
through charge sharing across binary-weighted computation capacitors. Each computation capacitor
unit is constructed using the inherent capacitor of the SA within the 4-bit flash ADC to optimize
space and minimize the kick-back effect. This 64x64 8T macro is fabricated using 7nm FinFET
technology, exhibiting an energy efficiency of 351 TOPS/W and a throughput of 372.4 GOPS for
1024 (64x16) 4x4b MAV operations.

Intel’s SRAM-based analog CIM design: Intel has recently proposed an SRAM-based CIM macro
utilizing their 22nm Low-Power FinFET process [79]. Through the implementation of a 1-to-2 ratioed
capacitor ladder (C-2C)-based charge domain computing scheme, the presented prototype chip
(shown in Figure 23) achieves the capability to perform up to 2k MAC operations in a single clock
cycle, alongside achieving a peak power efficiency of 32.2-TOPS/W with 8-bit precision for both
input activation and weights. The chip also ensures accurate MVMs by restricting the computation
error of less than 0.5%.

Bosch+Fraunhofer and GlobalFoundries+Fraunhofer FeFET based CIM designs: Fraunhofer is
also actively working on exploring the manufacturability and scalability aspects of FeFET and MRAM
devices at both the device and array levels. Together with GlobalFoundries, they have demonstrated a

CNM/CIM Landscape 25

; E,_ West Analog 64k SRAMs K Hi 716 >
© [~ Core 1k 8-bit MACs / [ol 5
@ / .
=| H5 i 28
“ S mE - 16 Columns g 3b 10k)
L] I ‘ N A weightl_ Wi 8 MAC,;,; Col. [g 0;
]] cim |3 5 - 8 [© 2
L s M Macro - v b Analog IA i - 4 g
2 [FeaTsaBll=aTsaTs3) s 8-b <3 ab,
| -7 (= weight_ W21 |3 MAG1| 3 3 Aoc
e
— — | :':‘”':‘: il Analog IA @ [6:":. g OA.16
— — -m - 8-b r =3 <
el =1 | 8/ = {am- e = a3 .
2 z WeightL_ W31 MAG;,; o
- @ gl .
3 g : 0A3
S| |- DAC 1
T [}y ' N g i |HHWHH g Analog IA | s-%DZ'
— | = L " A\ OAZ
o[UG 8-b o &b e
5] 3 Weight Wea1 MACMJ : =
THe === =S i
- ® — g..l:;::r::‘,u‘:ks Weight sub-bank selction \\\ 8b Analog IA —J

Fig. 23. Chip level architecture diagram of Intel’s analog CIM design [79].

FeFET-based crossbar array for multiply-accumulate (MAC) operation [80]. The array was fabricated
at GlobalFoundries with 28nm CMOS technology coupled with FeFET. To prevent the accumulation
of errors on the bitline, the arrays were divided into 8x8 segments.

In a recent work, Fraunhofer and Robert Bosch demonstrated a CIM crossbar using multi-level
FeFET cells. In the proposed design, the input is encoded into the applied voltage duration and
magnitude while the weights are stored in the multi-level FeFET cells. The MAC output is the
accumulated capacitor voltage that depends on the activation time and the number of FeFETs activated.
This reportedly reduces the impact of variations and the achieved performance of 885.4 TOPS/W is
also nearly-double compared to existing solutions.

HP’s CAM designs: In a recent work, Hewlett Packard Labs proposed a memristive-based analog
CAM for tree-based machine learning [81]. Analog CAMs are capable of performing searches based
on analog signal levels rather than digital data comparison. The proposed design combines analog
CAMs with traditional analog RAM and accelerates large random forest models with it. Figure 24
shows a high-level overview of the proposed system where the analog CAM can perform root-to-leaf
evaluation of an entire tree in a single step.

4.3 Comparative analysis and discussion

The surge in CIM and CNM systems is largely attributed to the revolution in data-intensive applications.
According to recent research by TSMC, traditional SRAM and DRAM technologies have effectively
scaled to meet capacity and bandwidth demands in the past decades [82], but their future scalability
is uncertain due to reaching inherent technological limits. This underscores the pivotal role that NVM
will play in the future of computing.

Especially in edge scenarios such as automotive, augmented reality, and Al, where energy efficiency
is paramount, NVM technologies are poised to play a pivotal role. As energy efficiency increases
through specialized hardware, domain-specific architectures harnessing these NVMs for CIM and
CNM solutions are anticipated to experience an unprecedented surge in the coming years. A recent
article from Intel [79] compares the performance of conventional digital accelerators with the
emerging analog and digital CIM and CNM accelerators. Conventional accelerators still achieve
higher throughput because CIM systems are relatively less optimized, array sizes are small, and the
peripheral circuitry overhead is non-negligible. Yet, they are orders of magnitude better in terms of

26

Fig. 24. A

Asif Ali Khan, Joao Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

I DL driver I Semse
| S ———— ——— — Amps
— -
Content +-
= Addressable ————
g Memory
S
—
7]
i —
- — ——
Memristor Memristor RAM
aCAM cell :]
= [oaray Class \
6T2M circuit
1 shot 1 shot

root-to-leaf path majority vote

n overview of the HP CIM system for tree-based learning [81].

power consumption. As of the time of writing, the most recent comparison depicted in [82] shows

similar trends.

1000 1 e #
Precision Processor Architecture /’\’1,00‘
% Float32 cPy . oMp \scent
® Int32 ® GPU O NmP . TPUV4j- 910
@ Floatl6 || @ FPGA O Mp y esla TRUV1, uv3)
_ 10011 @ int16 ® AsiC ¢ - F8D n 160 -
I W ints SRAM:| . ~“NVIDIA T4 Plv2
3 1S5CC:A SRANLIIP : 4
o ® intd 18SeC21 At |
= o : :"ti W7 Wb ¥ r00
10 nt rs 2 22 5
e - A Ve
O eDRAM-INIP ’ - '5"'3@”“ f‘%&"x
c Tesr2l SRAM-IMP 7 ¢
g ISSCC18 “prein - QUEST ”zcuwz
P e
= - BM-PIM
o 14 T o kyb‘mnNao
NVIDIA v e
t ' RRAM-IMP | B ’rmA L l'J:P)Mﬂ',,
o ISsccz1 GX 1150» ‘
o v ~ . _.DianNao 3D, DRAM * * e
o - NP o R
o -IMP h|D|anNao . 80
S o1l SCC'20 -~ Eyerlss -
& Ol eoram: IMP_. g . 2C706
TESI22 - QL
,j* N PR Qc)\@//
R O o o8- .
) 0« 7 P 0% R
0.01 17 = Xl Yo Rt
. " ¢DRAM- IMP o
. 1SSCC2L -
0001 0.01 0.1 1 10 100

Peak Power (W)

Fig. 25. Performance and power comparison of different outside memory processing (OMP) (we call it COM
in this report), NMP (ours CNM) and IMP (ours CIM) [83].

Table 2 presents a summary and comparison of the architectures discussed in this section. For
brevity, we only compare important parameters, such as the underlying memory technology, available
function (boolean logic, arithmetic, etc.), evaluation technique (simulation, prototype, analytic),
programming model, application domain, and technology node.

5 COMMERCIAL LANDSCAPE

This section overviews CIM and CNM companies/startups, highlighting their products, underlying
technologies, customers (when known), and tools. As not everything about companies is public,

CNM/CIM Landscape

27

Accelerator Year Technology Type Programming Logic unit Implementation Domain
model
McDRAM 2018 DRAM CNM Extended ISA MAC Hardware Al
MViD 2020 DRAM CNM Extended ISA MAC Hardware Al
PIM-HBM 2021 DRAM CNM Full software- FPUs (add, Mul) Hardware Al
(HBM) stack
AIM 2022 DRAM CNM APIL MAC Hardware Al
(GDDR6)
AXRAM 2018 DRAM (GPU- CNM API MAC, LUTs GPGPU-Sim Al
based system)
TESSERACT 2015 DRAM CNM API CPU Simulation Graph processing
(HMC)
TOP-PIM 2014 DRAM CNM OpenCL CPU+GPU Simulation Graph, HPC
(HMC)
AMC 2015 DRAM CNM OpenMP CPU Simulation HPC
(HMC)
HRL 2015 DRAM CNM MapReduce CGRA+FPGA Simulation Data analytics
(HMC)
CIM architectures (Academia/Research Labs)
ISAAC 2016 RRAM CIM NA Analog Xbar Analytical Al
PUMA 2019 RRAM CIM Compiler Xbar PUMAsim (arch. Al
simulation)
Pinatubo 2016 RRAM CIM API, Runtime Boolean logic In-house simulator ~ Bitwise Logic
PRIME 2016 RRAM CIM Compiler+API Xbar Analytical Al
PipeLayer 2017 RRAM CIM API Xbar Analytical CNN (train + infer)
AtomLayer 2018 RRAM CIM NA Xbar Analytical CNN (train + infer)
RIMAC 2023 RRAM CIM NA Xbar (without In-house simulator ~ DNN inference
DAC/ADC)

Table 2. A summary of the presented architectures. They are grouped into three categories: CNM, CIM, and
CIM (prototype chips/systems). All presented architectures are either simulation-based or prototype-based
(no products).

we only include details that we extract from these companies’ websites or are known to us via our
network.

5.1

Axelera [84] is one of the notable Semiconductor startups in Europe. Founded in 2021 and backed by
tech giants like Bitfury and IMEC, it had already taped out its first CIM chip, Thetis, in December
2021 (just four months after its founding). Today, it offers a fully integrated system-on-chip (SoC)
powered by its Metis Al processing units (AIPU).

About the Al core, as per the company’s website: “Axelera Al has fundamentally changed the
architecture of “compute-in-place” by introducing an SRAM-based digital in-memory computing
(D-IMC) engine. In contrast to analog in-memory computing approaches, Axelera’s D-IMC design
is immune to noise and memory non-idealities that affect the precision of the analog matrix-vector
operations as well as the deterministic nature and repeatability of the matrix-vector multiplication
results. Our D-IMC supports INT8 activations and weights, but the accumulation maintains full
precision at INT32, which enables state-of-the-art FP32 iso-accuracy for a wide range of applications
without the need for retraining”.

Axelera’s latest SoC consists of 4 cores and a RISC-V based control core. For programming these
systems, Axelera provides an end-to-end integrated framework for application development. The
high-level framework takes users along the development processes without needing to understand the
underlying architecture or even the machine learning concepts.

Axelera

28 Asif Ali Khan, Joao Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

Funding: “Axelera Al, the provider of the world’s most powerful and advanced solutions for Al at
the Edge, announces new investors who have joined their oversubscribed Series A round, bringing the
total amount raised to $50 million. In the last several months, CDP Venture Capital, Verve Ventures,
and Fractionelera have joined the round”, Axelera Al, May 22, 2023.

5.2 d-Matrix

d-Matrix is at the forefront of driving the transformation in data center architecture toward digital
in-memory computing (DIMC) [85]. Founded in 2019, the company has received substantial support
from prominent investors and strategic partners, including Playground Global, M12 (Microsoft
Venture Fund), SK Hynix, Nautilus Venture Partners, Marvell Technology, and Entrada Ventures.

Leveraging their in-SRAM digital computing techniques, a chipset-based design, high-bandwidth
BoW interconnects, and a full stack of machine learning and large language model tools and
software, d-Matrix pioneers best-performing solutions for large-scale inference requirements. A
full stack framework, compiler, and APIs (open-source as per the company’s website but couldn’t
find the link). Their latest product Jayhawk II can scale up to 150 TOPS/W using 6nm technology and
can handle LLM models up to 20x more inferences per second for LLM sizing to 40B parameters,
compared to state-of-the-art GPUs.

Funding: Temasek, Playground Global and Microsoft Corp.

5.3 Gyrfalcon Technology

Gyrfalcon Technology [86] also leverages CNM to accelerate Al on the edge. They offer an Al
processing in memory (APiM) architecture that combines a large MAC array directly with MRAM
memory modules. As of the current date, their software stack is not available.

Funding: Private.

5.4 MemComputing

MemComputing [87], founded in 2016, uses a computational memory based on its self-organizing logic
gates (SOLG). SOLGs are terminal-agnostic elements (memristor or memcapacitor) that implement
various logic gates. Their target applications comprise industrial computations associated with
optimizations, big data analytics, and machine learning. MemComputing provides a software stack
and offers it as a software-as-a-service.

Funding: MemComputing mentions the US Space Force, ENSOS, NASA, Ball Aerospace, PSA, US
Air Force, Canvass Labs and Defence Innovation Unit as partners.

5.5 Memverge

Memverge [88] is not directly doing any CIM or CNM but is relevant in the context. Backed by 9
investors including tech giants like Intel, SK hynix, the company’s main goal is to provide software
designed to accelerate and optimize data-intensive applications. Their main target is to consider
environments with “Endless Memory” and efficiently manage the memory to get more performance.

Latest news: “Samsung, MemVerge, H3 Platform, and XConn, today unveiled a 2TB Pooled
CXL Memory System at Flash Memory Summit. The system addresses performance challenges
faced by highly distributed AI/ML applications. These challenges include issues like spilling
memory to slow storage when main memory is full, excessive memory copying, I/O to storage,
serialization/deserialization, and Out-of-Memory errors that can crash an application.”, MemVerge,
August 8, 2023.

CNM/CIM Landscape 29

5.6 Mythic

Mythic [89] offers an analog matrix processor (Mythic AMP) that uses their analog compute engine
(ACE) based on flash memory array and ADCs. Mythic ACE also has a 32b RISC V processor, SIMD
vector engine, and a 64KB SRAM along with a high-throughput network-on-chip (NoC). Mythic
workflow in Figure 26 shows that the software stack takes a trained NN model, optimizes it, and
compiles it to generate code for Mythic AMP. The optimization suit also transforms NN in a way that
can be accelerated on the analog CIM system.

FP32to INT8 Compile network graph and
conversion map layers to Mythic AMP
. .

Edge devices

Caffe & onnx
OPyTorch < Tensorf

AL
S 0
'\i

D)

Network Quantization | Model b Graph { Runtime OO
Optimization q Re-Training [| Compilation Generation QO((D
d

Neural network
graph . . .

Optimize layers for Mythic Analog Re-train model for Mythic AMP Firmware binaries‘, network weights,
Matrix Processor (AMP™) and host drivers

Fig. 26. Mythic Al workflow [89].

Funding: The company is supported by many investors: Micron, HP Enterprise, SoftBank, Future
ventures, Lam Research, Threshold, Catapult, DCVC and UDC ventures.

5.7 NeuroBlad

Founded in 2018, NeuroBlade offers the SPU (SQL Processing Unit), the industry’s first, proven
processor architecture that delivers orders of magnitude improvement by departing from Von Neumann
model [90]. Neuroblade is also a CNM architecture (more closed to near-storage computing) where
they integrate custom RISC processors on the DRAM chip (very similar to UPMEM). The SPUs are
installed as PCI-e cards that can be deployed in data centers. As for the software stack, the company
offers an SDK along with a set of APIs that hide the complexity and programming model for these
cores from the end user and also allow optimizing for maximum parallelism and efficiency.

Funding: NeuroBlade is funded by Stage one, Grove Ventures, UMC, PSMC Intel capitals, Pegratron,
Marubeni, Marius Nacht, Corner and MediaTek.

5.8 Rain Al

Founded in 2017, Rain Al also focuses on radically cheaper Al computing [91]. The company has no
hardware product yet but is aiming to be 100X better than GPU using their innovations in radical
co-design (by looking at the algorithms and the CIM hardware at the same time). They are targeting
Al training (along with the inference) on the edge with the ultimate goal of putting models the size of
ChatGPT into chips of the size of a thumbnail. They are transforming the algorithms in a way that
fundamentally matches the behavior of the analog memristive devices. As per the CEO, they have
a few tap-outs planned for this year and the product (a complete platform) next year and they are
working on a software stack for ease of use and ease of integration.

Funding: The company is funded by Y combinator S18, Sam Altman (CEO OpenAl), Liquid 2
Ventures, Loup Ventures, Airbus Ventures, and Daniel Gross (founder Poineer).

30 Asif Ali Khan, Joao Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

5.9 SEMRON

Founded in 2020, Semron [92] promises to offer 3D solutions powered by analog CIM. At the core of
their technology is their innovative CapRAM devices which are semiconductor devices that store
multi-bit values in their variable capacitances (unlike variable resistance states in memristors). Since
CapRAM is capacitive, the noise in calculations is much lower and the energy efficiency, as per
their website, is unparalleled. Although Semron has the device technology, there are no details of its
products, architecture, and software stack.

Funding: As per crunchbase, the company is funded by VentureOut.

5.10 SureCore

Surecore [93] is working on many low-power products including custom application-specific. They
also have a product named “CompuRAM” that embeds arithmetic capability within the SRAM array
to enable low-power Al on the edge. Besides working on SRAM-based solutions, in collaboration
with Intrinsic, they have recently ventured into RRAM technology. No information is provided
regarding the software stack.

Funding: The company is supported by Capital-E, Finance Yorkshire and Mercia Technologies.

5.11 Synthara

Synthara is a Zurich-based Semiconductor company that was founded in 2017 [94]. Their latest
product, ComputeRAM, integrates SRAM-based CIM macros with proprietary elements to accelerate
dot products. The solution delivers 50x compute efficiency and can be used for Al, digital signal
processing, and linear algebra-heavy routines. The CIM-powered SRAM array can be operated just
like conventional SRAM. ComputeRAM is not married to a specific ISA and can work with any host
processor. Synthara also provides what they call Compiler hooks that can transparently offload any
input application to their ComputeRAM accelerator, without changing or rewriting the code.

Funding: The company is supported by EU funding for research & innovation, High-tech Griinder-
fonds, Intel.ignite, FNSNF, multicoreware, ventureKick and others.

5.12 Syntiant

Founded in 2017, Syntiant also leverages DRAM-based CNM and utilizes standard CMOS processes
to design their neural decision processors (NDPs) that perform direct processing of neural network
layers from platforms like TensorFlow [95]. Syntiant also mainly targets Al on the edge having
applications in many domains, including always-on voice, audio, image, and sensor applications.
Syntiant’s TinyML platform, powered by NDP101, aspires to democratize Al by presenting a
comprehensive system for those interested in initiating their own model training for edge computing.

Funding: Syntiant is funded by prominent investors including, Atlantic Bridge, Rober Bosch Venture
Capital, Embark Ventures, DHVC, Intel capitals, M12 (Microsoft ventures), and Motorola Solutions.

5.13 TetraMem

Founded in 2018, TetraMem is set to offer the industry’s most disruptive CIM technology for edge
application [96]. TetraMem is also leveraging memristors for analog MAC operations, aiming at
inference on the edge. Their systems are built upon their patented devices and co-design solutions.
TetraMem offers (1) Platform as a service (PaaS), a complete hardware and software platform
designed to integrate into your own system; (2) Software as a service (SaaS), to help develop your
NN edge application and integrate it into your system. Their verified full software stack provides an

CNM/CIM Landscape 31

unmatched experience on actual analog in-memory compute silicon; and (3) a neural processing unit
(NPU) based on memristive technology.

TetraMem has recently announced a collaboration with Andes Technologies and together with their
research collaborators have demonstrated a memristive device that can have thousands of conductance
levels (unmatched) [97].

Funding: Private.

5.14 EnCharge Al

Founded in 2022, EnCharge Al promise to offer an end-to-end scalable architecture for Al infer-
ence [98]. They leverage SRAM-based CIM arrays for analog MVM operations and combine them
with SIMD CNM logic to perform custom element-wise operations. The architecture comprises an
array of CIM units (CIMUs), an on-chip network interconnecting CIMUs, buffers, control circuitry,
and off-chip interfaces. Each CIMU is equipped with an SRAM-based CIM array featuring ADCs to
convert computed outputs into digital values. Additionally, CIMUs house SIMD units and FPUs with
a custom instruction set, along with buffers dedicated to both computation and data flow. According to
the company’s official website, they offer a software platform that fits with standard ML frameworks,
such as PyTorch, TensorFlow, and ONNX. This also allows the implementation of various ML models
and their customizations. Specific implementation details about the software stack are not available.

Funding: Encharge Al is funded by AlleyCorp, Scout Ventures, Silicon Catalyst Angels, Schams
Ventures, E14 Fund, and Alumni Ventures. At their launch in December 2022, they announced
securing $21.7 Mio. in their series A round.

5.15 Re(conceive) Al

Re(conceive) is another CIM startup founded in 2019 that promises offering “the most power
Al accelerator” [99]. As per their website, re(conceive) are pioneers in realizing the complete
potential of CMOS-based analog in-memory Al computing, achieving the utmost efficiency among
all known Al accelerators. However, no specific details are available on the company’s funding and
technology (hardware/software).

5.16 Fractile Al

Established in 2022 by a team of Oxford University scientists, Fractile [100] aims to transform the
world by enabling large language models’ (LLM) inference at speeds up to 100 times faster than
Nvidia’s most recent H100 GPUs. This increase in performance primarily arises from in-memory
computations. However, the details of the technology, both hardware and software, as well as the
company’s funding particulars, remain undisclosed.

5.17 Untether Al

Founded in 2018 [101], Untether’s main design integrates RISC-V cores on the SRAM chips for
processing Al workloads. Their latest product, the tsunAlmi accelerator card provides a phenomenal
2 POPS of compute power, twice the amount of any available product. This compute power translates
into over 80,000 frames per second of ResNet-50 throughput, three times the throughput of any
product on the market. Untether Al provides an automated SDK for its products. The SDK takes a
network model implemented in common machine learning frameworks like TensorFlow and PyTorch
and lowers it into the kernel code that runs on these RISC-V processors. It automatically takes care of
low-level optimizations, providing extensive visualization, a cycle-accurate simulator, and an easily
adoptable runtime API.

32 Asif Ali Khan, Joao Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon
Company Use-Case Technology Solution Programmability Funding (Mio. $)
(PitchBook)
Axelera Al on the Edge SRAM (digital MAC) Hardware-SoC SDK provided 63.72 (Early stage VC)
d-Matrix Alinferenceindat- SRAM (digital MAC) Chiplets Open-source Frame- 161.3 (Early stage VC)
acenters work(s)
Synthara Al DSP, Linear al- SRAM (dot product) Accelerator Compiler available 3.33 (Grant)
gebra
Mythic Al on the Edge Flash (Analog computing) ~ Accelerator, pro- Software stack (does 177.41 (Later stage VC)
cessor rewriting, opt, mapping)
Surecore Al on the edge SRAM (CNM) Chip No details 11.16 (Later stage VC)
SEMRON Al on the edge Memcapacitor 3D-Chip (planned) No details 1.63 (Seed round)
Untether Al Al everywhere SRAM+RISC-V (CNM) Chips, accelerator ~SDK and simulator 153.52 (Early stage VC)
(Toolkit)
Syntiant Al on the edge SRAM+ARM MCUs Processor Available 121.43 (Later stage VC)
(CNM)
Neuroblade Analytics DRAM+RISC cores Processor Set of APIs 110.43 (Debt - General)
(CNM)
Rain Al LLMs on the edge ~ Memristors Processors NA 64.04 (Later stage VC)
(Training)
TetraMem Edge applications ~ Memristors Processors, soft- HDK, SDK NA
ware stack
Gyrfalcon AT on the edge CNM (MACs with Chip NA 68.0 (Debt - PPP)
Tech MRAM)
UPMEM General-purpose DRAM+RISC cores System APIs 15.5 (Later stage VC)
EnCharge AI Al inference SRAM (CIM) + SIMD Chip Software available 21.7 (Angel - individ)
(CNM)
Re(conveive) Al inference SRAM (analog CIM) Chip NA NA
Fractile LLMs inference NA Chip NA NA

Table 3. CIM/CNM companies, with their products, technologies, and funding status.

Funding: Untether’s investors include CPPIB, GM Ventures, Intel Capital, Radical Ventures, and
Tracker Capital.

5.18 UPMEM Technology

Founded in 2015, UPMEM is a tech company offering programmable CNM systems for data-intensive
applications. See more details on the architecture and programmability in Section 4.1.1.

Funding: The company is funded by Western Digital, Partech, and super nova invest.

5.19 Summary

Table 3 and Figure 27 summarize the discussion in this section and provides a landscape of CIM,
CNM companies, their products, technologies, and funding status. Please note that this compilation
is not exhaustive; it includes only companies known to us and those that, based on our understanding,
fall within the CIM and CNM categories. As Figure 27 clearly illustrates, the current landscape is
predominantly characterized by conventional technologies, with a notable absence of a comprehensive
software ecosystem.

5.20 Open challenges

CIM and CNM systems have already entered the market, yet a series of open challenges are expected
to become more pronounced as time progresses. It will take years to understand how these units
will harmonize within the overall system architecture and determine their optimal utilization. In the
following, we briefly discuss the important categories.

Materials: During the era of Moore’s law in computing, the primary focus was on refining transistors
to be smaller, faster, and more energy-efficient. The selection of materials was confined to only

CNM/CIM Landscape 33

* -
Available REEER o Mythic™ Applications
Inference at the edge
d-Matrix e
Available but ﬁ o () Inference in datacenters
% requries hardware Synthara %
8, knowledge e v TetraMem Q Al everywhere
$ § EnCharge Al [J LLMs at edge (training)
o g
JRS] g \/ Data analytics, general
B3 "
& 5 APIs o v Neureka®
0 Technology
1 Compute-in-memory (CIM)
. 4) 0 %4
Not available Re(conceive) Rain AL SEMRON
SRAM DRAM MRAM Memristor CapRAM Flash
(PCM, RRAM)

Memory technology

Fig. 27. A landscape of CIM and CNM companies, highlighting their technologies, target applications and
software stack readiness.

those compatible with manufacturing processes. However, the limitations of these materials to scale
further are now exposed. As a result, new materials have emerged and further research is needed to
investigate novel materials (to enable further transistor scaling: hopes with carbon nanotube, and
novel memory devices).

Devices: Mainstream computing has largely relied on digital logic and binary storage. Nonetheless,
the emerging wave of computing architectures, particularly CIM requires novel multi-state devices
allowing both analog and digital operations. Existing devices, memristors in particular, do offer such
properties but have reliability and other associated challenges.

Integration: We have seen various architectures based on various technologies. As is evident, there
is no on-technology-fits-all solution. Eventually, CIM modules based on different technologies need
to be integrated into the same to get the best out of all these technologies. This poses integration
challenges that have received little to no attention.

Processing systems: These novel architectures require new tools, algorithms, cost models, and
software solutions. All of them are crucial to understanding these architectures, enabling their design
space exploration, and making them accessible to a larger audience.

While every challenge holds significance and demands attention, programmability and user-
friendliness are the most important ones from the user’s standpoint. Following is an excerpt from
Facebook’s recent article on their inference accelerator that highlights the same.

“We’ve investigated applying processing-in-memory (PIM) to our workloads and determined
there are several challenges to using these approaches. Perhaps the biggest challenge of PIM is its
programmability”.

In response to the challenges associated with programmability, we have ourselves been working on
high-level programming and compilation frameworks for CNM and CIM systems [102—-105]. We
have developed reusable abstractions and demonstrated compilation flows for CIM systems with
memristive crossbars, CAMs, CIM-logic modules, and for CNM systems like UPMEM and Samsung
CNM. However, much more cross-layer work is needed to improve automation [106], in particular
for heterogeneous systems integrating several paradigms and technologies.

6 CONCLUSIONS

This paper overviews the landscape of compute-near-memory (CNM) and compute-in-memory (CIM)
paradigms. It starts with an explanation of the Von Neumann bottleneck, the necessity of novel
CIM/CNM paradigms, and the key terminology used in the related literature. It offers a comprehensive

34 Asif Ali Khan, Jodo Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

background on major memory technologies and emphasizes the importance of heterogeneous systems.
The paper overviews prominent CIM and CNM designs from both academia and industry. In contrast
to other studies in the literature that focus on either application domains or memory technologies,
this paper concentrates on designs that have either successfully transitioned into product offerings or
have reached a stage where commercialization is a feasible prospect. We explain prevalent CNM
architectures, including microarchitectural details, associated technologies, software frameworks,
and the results achieved (usually measured as throughput). Subsequently, we survey the landscape of
CIM systems, explaining prevailing CIM designs that use prominent technologies such as SRAM,
DRAM, MRAM, RRAM, PCM, and FeFET. We overview CIM chips from industrial giants (research
centers), spanning from earlier designs like ISAAC and PUMA by Hewlett Packard Enterprise to the
most cutting-edge chips from IBM, Samsung, TSMC, Intel, Meta (Facebook), Bosch, Frauenhofer,
and GlobalFoundries. Current trends in industrial research show that while conventional SRAM and
DRAM technologies are ready to be leveraged in CIM/CNM systems, emerging technologies like
PCM, RRAM, MRAM, and FeFETSs are also poised to make partial inroads, particularly for selected
operations, such as dot products and pattern matching.

Finally, we describe the landscape of CIM and CNM start-ups, highlighting the emergence of
numerous new companies in recent years that have introduced innovative solutions to cater to the
thriving demands of AI and other data-intensive application domains. These companies are targeting
a diverse range of market segments, spanning from power-efficient edge applications (Al at the edge)
to high-performance data center servers (e.g., for Al training), and many have successfully secured
substantial funding (hundreds of millions) in their initial funding rounds. The paper shows that SRAM
technology currently dominates this landscape. However, with active research and breakthroughs in
emerging NVMs (demonstrated by recent industrial chips), it is anticipated that NVMs will play a
more prominent role in these paradigms in the near future.

The paper highlights that CIM and CNM technologies (i) harbor significant potential to outperform
conventional systems, and (ii) have already made inroads into the market. However, their true potential
remains untapped. This is attributed to a number of challenges, including the lack of accurate
design space exploration tools, programming frameworks, and a comprehensive software ecosystem
in general, and cost and performance models that can be leveraged to guide static and runtime
optimizations for these systems.

CNM and CIM computing is an extremely active field. We believe that we have captured a
representative snapshot of this field, early in year 2024, and remain excited about how technologies,
devices, architectures and tools will continue to develop moving forward.

ACKNOWLEDGEMENTS

This work was supported by Vsquared Ventures (VSQ). Special thanks to Max Odendahl (Venture
Partner at VSQ) for his feedback on previous versions of the manuscript. This work was also
supported by the German Research Council (DFG) through the HetCIM project (project number
502388442) in the context of the DFG Priority Program on Disruptive Memory Technologies
(SPP2377 https://spp2377.uos.de) and the German Federal Ministry of Education and Research
(BMBF, project number 011S18026A-D) by funding the competence center for Big Data and Al
ScaDS.AI Dresden/Leipzig (https://scads.ai).

REFERENCES

[1] S.Li, A. O. Glova, X. Hu, P. Gu, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Scope: A stochastic
computing engine for dram-based in-situ accelerator,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 1EEE, 2018, pp. 696-709.

https://spp2377.uos.de
https://scads.ai

CNM/CIM Landscape 35

(2]

[3

—

[4

—

[5

—_

(6]

[7

—

(8]

[9

—

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A. de Vries, “The growing energy footprint of artificial intelligence,” Joule, vol. 9, no. 4, p. 1-4, Oct 2023. [Online].
Auvailable: https://doi.org/10.1016/j.joule.2023.09.004

J. Calma. (2023, September) Microsoft is going nuclear to power its ai ambitions. The Verge. [Online]. Available:
https://www.theverge.com/2023/9/26/23889956/microsoft-next- generation-nuclear-energy- smr-job- hiring

A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, “Ai and ml accelerator survey and trends,”
in 2022 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 2022, pp. 1-10.

F. Devaux, “The true processing in memory accelerator,” in 2019 IEEE Hot Chips 31 Symposium (HCS). 1EEE
Computer Society, 2019, pp. 1-24.

Y.-C. Kwon, S. H. Lee, J. Lee, S.-H. Kwon, J. M. Ryu, J.-P. Son, O. Seongil, H.-S. Yu, H. Lee, S. Y. Kim et al., “25.4 a
20nm 6gb function-in-memory dram, based on hbm?2 with a 1.2 tflops programmable computing unit using bank-level
parallelism, for machine learning applications,” in 2021 IEEE International Solid-State Circuits Conference (ISSCC),
vol. 64. IEEE, 2021, pp. 350-352.

S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee, K. Lim, H. Shin et al., “Hardware architecture and
software stack for pim based on commercial dram technology: Industrial product,” in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). 1EEE, 2021, pp. 43-56.

M. He, C. Song, I. Kim, C. Jeong, S. Kim, I. Park, M. Thottethodi, and T. Vijaykumar, “Newton: A dram-maker’s
accelerator-in-memory (aim) architecture for machine learning,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1EEE, 2020, pp. 372-385.

S. Lee, K. Kim, S. Oh, J. Park, G. Hong, D. Ka, K. Hwang, J. Park, K. Kang, J. Kim ef al., “A 1ynm 1.25 v 8gb,
16gb/s/pin gddr6-based accelerator-in-memory supporting 1tflops mac operation and various activation functions for
deep-learning applications,” in 2022 IEEFE International Solid-State Circuits Conference (ISSCC), vol. 65. 1EEE,
2022, pp. 1-3.

H.-S. Wong and S. Salahuddin, “Memory leads the way to better computing,” Nature nanotechnology, vol. 10, pp.
191-4, 03 2015.

H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, and M.-J. Tsai, “Metal-oxide rram,”
Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, 2012.

W. J. Gallagher and S. S. P. Parkin, “Development of the magnetic tunnel junction mram at ibm: From first junctions
to a 16-mb mram demonstrator chip,” IBM J. Res. Dev., vol. 50, no. 1, pp. 5-23, Jan. 2006. [Online]. Available:
http://dx.doi.org/10.1147/rd.501.0005

J. Hoffman, X. Pan, J. W. Reiner, F. J. Walker, J. P. Han, C. H. Ahn, and T. P. Ma, “Ferroelectric field effect transistors
for memory applications,” Advanced Materials, vol. 22, no. 26-27, pp. 2957-2961, 2010. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200904327

P. M. Research, “Market study on in-memory computing: Adoption of fast-processing databases fuels the demand.
report pmrrep33026,” 2022.

P. Radojkovi¢, P. Carpenter, P. Esmaili-Dokht, R. Cimadomo, H.-P. Charles, S. Abu, and P. Amato, “Processing in
memory: the tipping point,” White paper: Processing in Memory: the Tipping Point, 2021.

M. Anderson, B. Chen, S. Chen, S. Deng, J. Fix, M. Gschwind, A. Kalaiah, C. Kim, J. Lee, J. Liang et al.,
“First-generation inference accelerator deployment at facebook,” arXiv preprint arXiv:2107.04140, 2021.

A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou, “Memory devices and applications for in-memory
computing,” Nature Nanotechnology, pp. 1-16, 2020.

F. Ottati, G. Turvani, G. Masera, and M. Vacca, “Custom memory design for logic-in-memory: Drawbacks and
improvements over conventional memories,” Electronics, vol. 10, no. 18, p. 2291, 2021.

S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser,
“Magic—memristor-aided logic,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11,
pp. 895-899, 2014.

E. Lehtonen, J. Poikonen, and M. Laiho, Memristive Stateful Logic, 01 2014, pp. 603-623.

P. Chi et al., “Prime: A novel processing-in-memory architecture for neural network computation in reram-based main
memory,” in ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), June 2016, pp.
27-39.

A. Shafiee et al., “Isaac: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars,” ACM
SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14-26, 2016.

S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A processing-in-memory architecture for bulk bitwise
operations in emerging non-volatile memories,” in Proceedings of the 53rd Annual Design Automation Conference,
2016, pp. 1-6.

W. A. Simon, Y. M. Qureshi, M. Rios, A. Levisse, M. Zapater, and D. Atienza, “Blade: An in-cache computing
architecture for edge devices,” IEEE Transactions on Computers, vol. 69, no. 9, pp. 1349-1363, 2020.

https://doi.org/10.1016/j.joule.2023.09.004
https://www.theverge.com/2023/9/26/23889956/microsoft-next-generation-nuclear-energy-smr-job-hiring
http://dx.doi.org/10.1147/rd.501.0005
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200904327

36

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Asif Ali Khan, Joao Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C.
Mowry, “Ambit: In-memory accelerator for bulk bitwise operations using commodity dram technology,” in Proceedings
of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, 2017, pp. 273-287.

D. Fakhry, M. Abdelsalam, M. W. El-Kharashi, and M. Safar, “A review on computational storage devices and near
memory computing for high performance applications,” Memories-Materials, Devices, Circuits and Systems, p. 100051,
2023.

G. Singh, L. Chelini, S. Corda, A. J. Awan, S. Stuijk, R. Jordans, H. Corporaal, and A.-J. Boonstra, “Near-memory
computing: Past, present, and future,” Microprocessors and Microsystems, vol. 71, p. 102868, 2019. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0141933119300389

A. Gebregiorgis, H. A. Du Nguyen, J. Yu, R. Bishnoi, M. Taouil, F. Catthoor, and S. Hamdioui, “A survey on
memory-centric computer architectures,” J. Emerg. Technol. Comput. Syst., vol. 18, no. 4, oct 2022. [Online]. Available:
https://doi.org/10.1145/3544974

F. Gao, G. Tziantzioulis, and D. Wentzlaff, “Computedram: In-memory compute using off-the-shelf drams,” in
Proceedings of the 52nd annual IEEE/ACM international symposium on microarchitecture, 2019, pp. 100-113.

M. Ali, A. Jaiswal, S. Kodge, A. Agrawal, I. Chakraborty, and K. Roy, “Imac: In-memory multi-bit multiplication
and accumulation in 6t sram array,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 8, pp.
2521-2531, 2020.

Z.-R. Wang, Y.-T. Su, Y. Li, Y.-X. Zhou, T.-J. Chu, K.-C. Chang, T.-C. Chang, T.-M. Tsai, S. M. Sze, and X.-S. Miao,
“Functionally complete boolean logic in 1tlr resistive random access memory,” I[EEE Electron Device Letters, vol. 38,
no. 2, pp. 179-182, 2016.

A. Kazemi, F. Miiller, M. M. Sharifi, H. Errahmouni, G. Gerlach, T. Kdmpfe, M. Imani, X. S. Hu, and M. Niemier,
Scientific reports, vol. 12, no. 1, p. 19201, 2022.

R. Neale, D. Nelson, and G. E. Moore, “Nonvolatile and reprogrammable, the read-mostly memory is here,” Electronics,
vol. 43, no. 20, pp. 56-60, 1970.

G. W. Burr, M. J. Brightsky, A. Sebastian, H.-Y. Cheng, J.-Y. Wu, S. Kim, N. E. Sosa, N. Papandreou, H.-L. Lung,
H. Pozidis et al., “Recent progress in phase-change memory technology,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 6, no. 2, pp. 146-162, 2016.

Z. Guo, J. Yin, Y. Bai, D. Zhu, K. Shi, G. Wang, K. Cao, and W. Zhao, “Spintronics for energy-efficient computing: An
overview and outlook,” Proceedings of the IEEE, vol. 109, no. 8, pp. 1398-1417, 2021.

A. Kent and D. Worledge, “A new spin on magnetic memories,” Nature nanotechnology, vol. 10, pp. 187-91, 03 2015.
D. Reis, M. Niemier, and X. S. Hu, “Computing in memory with fefets,” in Proceedings of the international symposium
on low power electronics and design, 2018, pp. 1-6.

J. D. Kendall and S. Kumar, “The building blocks of a brain-inspired computer,” Applied Physics Reviews, vol. 7, no. 1,
2020.

V. Milo, G. Malavena, C. Compagnoni, and D. Ielmini, “Memristive and cmos devices for neuromorphic computing,”
Materials, vol. 13, p. 166, 01 2020.

D. Patterson, K. Asanovic, A. Brown, R. Fromm, J. Golbus, B. Gribstad, K. Keeton, C. Kozyrakis, D. Martin,
S. Perissakis, R. Thomas, N. Treuhaft, and K. Yelick, “Intelligent ram (iram): the industrial setting, applications, and
architectures,” in Proceedings International Conference on Computer Design VLSI in Computers and Processors, 1997,
pp. 2-7.

J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin, C. Chen, C. W. Kang et al.,
“The architecture of the diva processing-in-memory chip,” in Proceedings of the 16th international conference on
Supercomputing, 2002, pp. 14-25.

Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and J. Torrellas, “Flexram: Toward an advanced
intelligent memory system,” in 2012 IEEE 30th International Conference on Computer Design (ICCD). 1EEE, 2012,
pp. 5-14.

J. Gémez-Luna, I. E. Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira, and O. Mutlu, “Benchmarking a new paradigm:
An experimental analysis of a real processing-in-memory architecture,” arXiv preprint arXiv:2105.03814, 2021.

H. Shin, D. Kim, E. Park, S. Park, Y. Park, and S. Yoo, “Mcdram: Low latency and energy-efficient matrix computations
in dram,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp.
2613-2622, 2018.

B. Kim, J. Chung, E. Lee, W. Jung, S. Lee, J. Choi, J. Park, M. Wi, S. Lee, and J. H. Ahn, “Mvid: Sparse matrix-vector
multiplication in mobile dram for accelerating recurrent neural networks,” IEEE Transactions on Computers, vol. 69,
no. 7, pp. 955-967, 2020.

L. Ke, X. Zhang, J. So, J.-G. Lee, S.-H. Kang, S. Lee, S. Han, Y. Cho, J. H. Kim, Y. Kwon et al., “Near-memory
processing in action: Accelerating personalized recommendation with axdimm,” IEEE Micro, vol. 42, no. 1, pp.
116-127, 2021.

https://www.sciencedirect.com/science/article/pii/S0141933119300389
https://doi.org/10.1145/3544974

CNM/CIM Landscape 37

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]
[67]

[68]

A. Ankit et al., “Puma: A programmable ultra-efficient memristor-based accelerator for machine learning inference,” in
Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 715-731.

A. Yazdanbakhsh, C. Song, J. Sacks, P. Lotfi-Kamran, H. Esmaeilzadeh, and N. S. Kim, “In-dram near-data approximate
acceleration for gpus,” in Proceedings of the 27th International Conference on Parallel Architectures and Compilation
Techniques, 2018, pp. 1-14.

J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-in-memory accelerator for parallel graph
processing,” in Proceedings of the 42nd Annual International Symposium on Computer Architecture, 2015, pp. 105-117.
D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Ignatowski, “Top-pim: Throughput-oriented
programmable processing in memory,” in Proceedings of the 23rd international symposium on High-performance
parallel and distributed computing, 2014, pp. 85-98.

R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, C.-Y. Cher, C. H. Costa, J. Doi, C. Evangelinos
et al., “Active memory cube: A processing-in-memory architecture for exascale systems,” IBM Journal of Research and
Development, vol. 59, no. 2/3, pp. 17-1, 2015.

M. Gao and C. Kozyrakis, “Hrl: Efficient and flexible reconfigurable logic for near-data processing,” in 2016 IEEE
International Symposium on High Performance Computer Architecture (HPCA). Ieee, 2016, pp. 126-137.

D. Reis, A. F. Laguna, M. Niemier, and X. S. Hu, “In-memory computing accelerators for emerging learning paradigms,
in Proceedings of the 28th Asia and South Pacific Design Automation Conference, 2023, pp. 606—611.

L. Xie, H. A. Du Nguyen, J. Yu, A. Kaichouhi, M. Taouil, M. AlFailakawi, and S. Hamdioui, “Scouting logic: A novel
memristor-based logic design for resistive computing,” in 2017 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). 1EEE, 2017, pp. 176-181.

A. Ankit, I. El Hajj, S. R. Chalamalasetti, S. Agarwal, M. Marinella, M. Foltin, J. P. Strachan, D. Milojicic, W.-M. Hwu,
and K. Roy, “Panther: A programmable architecture for neural network training harnessing energy-efficient reram,”
IEEE Transactions on Computers, vol. 69, no. 8, pp. 1128-1142, 2020.

L. Song et al., “Pipelayer: A pipelined reram-based accelerator for deep learning,” in /EEE International Symposium on
High Performance Computer Architecture (HPCA), Feb 2017, pp. 541-552.

X. Qiao, X. Cao, H. Yang, L. Song, and H. Li, “Atomlayer: A universal reram-based cnn accelerator with atomic layer
computation,” in Proceedings of the 55th Annual Design Automation Conference, 2018, pp. 1-6.

P. Chen, M. Wu, Y. Ma, L. Ye, and R. Huang, “Rimac: An array-level adc/dac-free reram-based in-memory dnn
processor with analog cache and computation,” in Proceedings of the 28th Asia and South Pacific Design Automation
Conference, 2023, pp. 228-233.

G. Yuan, P. Behnam, Z. Li, A. Shafiee, S. Lin, X. Ma, H. Liu, X. Qian, M. N. Bojnordi, Y. Wang et al., “Forms:
Fine-grained polarized reram-based in-situ computation for mixed-signal dnn accelerator,” in 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA). 1EEE, 2021, pp. 265-278.

Z. Wang, S. Joshi, S. Savel’Ev, W. Song, R. Midya, Y. Li, M. Rao, P. Yan, S. Asapu, Y. Zhuo et al., “Fully memristive
neural networks for pattern classification with unsupervised learning,” Nature Electronics, vol. 1, no. 2, pp. 137-145,
2018.

W.-H. Chen, K.-X. Li, W.-Y. Lin, K.-H. Hsu, P.-Y. Li, C.-H. Yang, C.-X. Xue, E.-Y. Yang, Y.-K. Chen, Y.-S. Chang et al.,
“A 65nm 1mb nonvolatile computing-in-memory reram macro with sub-16ns multiply-and-accumulate for binary dnn ai
edge processors,” in 2018 IEEE International Solid-State Circuits Conference-(ISSCC). 1EEE, 2018, pp. 494-496.
C.-X. Xue, W.-H. Chen, J.-S. Liu, J.-F. Li, W.-Y. Lin, W.-E. Lin, J.-H. Wang, W.-C. Wei, T.-W. Chang, T.-C. Chang
etal.,“24.1 a Imb multibit reram computing-in-memory macro with 14.6 ns parallel mac computing time for cnn based
ai edge processors,” in 2019 IEEE International Solid-State Circuits Conference-(ISSCC). 1EEE, 2019, pp. 388-390.
Q. Liu, B. Gao, P. Yao, D. Wu, J. Chen, Y. Pang, W. Zhang, Y. Liao, C.-X. Xue, W.-H. Chen et al., “33.2 a fully
integrated analog reram based 78.4 tops/w compute-in-memory chip with fully parallel mac computing,” in 2020 I[EEE
International Solid-State Circuits Conference-(ISSCC). 1EEE, 2020, pp. 500-502.

C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaaauw, and R. Das, “Neural cache: Bit-serial
in-cache acceleration of deep neural networks,” in 2018 ACM/IEEE 45Th annual international symposium on computer
architecture (ISCA). 1EEE, 2018, pp. 383-396.

M. Kang, S. K. Gonugondla, S. Lim, and N. R. Shanbhag, “A 19.4-nj/decision, 364-k decisions/s, in-memory random
forest multi-class inference accelerator,” IEEE Journal of Solid-State Circuits, vol. 53, no. 7, pp. 2126-2135, 2018.
H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-tile 2.4-mb in-memory-computing cnn accelerator employing
charge-domain compute,” IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1789-1799, 2019.

A. Biswas and A. P. Chandrakasan, “Conv-sram: An energy-efficient sram with in-memory dot-product computation
for low-power convolutional neural networks,” IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp. 217-230, 2018.
S. Yin, Z. Jiang, J.-S. Seo, and M. Seok, “Xnor-sram: In-memory computing sram macro for binary/ternary deep neural
networks,” IEEE Journal of Solid-State Circuits, vol. 55, no. 6, pp. 1733-1743, 2020.

>

38

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]
[82]
[83]

[84]
[85]
[86]
[87]
[88]
[89]
[90]
[91]
[92]
[93]
[94]
[95]
[96]
[97]

[98]

Asif Ali Khan, Joao Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

S. Angizi, Z. He, A. S. Rakin, and D. Fan, “Cmp-pim: an energy-efficient comparator-based processing-in-memory
neural network accelerator,” in Proceedings of the 55th Annual Design Automation Conference, 2018, pp. 1-6.

J. Doevenspeck, K. Garello, B. Verhoef, R. Degraeve, S. Van Beek, D. Crotti, F. Yasin, S. Couet, G. Jayakumar,
1. Papistas et al., “Sot-mram based analog in-memory computing for dnn inference,” in 2020 IEEE Symposium on VLSI
Technology. IEEE, 2020, pp. 1-2.

L. Chang, X. Ma, Z. Wang, Y. Zhang, Y. Xie, and W. Zhao, “Pxnor-bnn: In/with spin-orbit torque mram preset-xnor
operation-based binary neural networks,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27,
no. 11, pp. 2668-2679, 2019.

S. Jung, H. Lee, S. Myung, H. Kim, S. K. Yoon, S.-W. Kwon, Y. Ju, M. Kim, W. Yi, S. Han et al., “A crossbar array of
magnetoresistive memory devices for in-memory computing,” Nature, vol. 601, no. 7892, pp. 211-216, 2022.

E. Breyer, H. Mulaosmanovic, T. Mikolajick, and S. Slesazeck, “Reconfigurable nand/nor logic gates in 28 nm hkmg
and 22 nm fd-soi fefet technology,” in 2017 IEEE International Electron Devices Meeting (IEDM). 1EEE, 2017, pp.
28-5.

X. Yin, C. Li, Q. Huang, L. Zhang, M. Niemier, X. S. Hu, C. Zhuo, and K. Ni, “Fecam: A universal compact digital
and analog content addressable memory using ferroelectric,” IEEE Transactions on Electron Devices, vol. 67, no. 7, pp.
2785-2792, 2020.

A. Kazemi, M. M. Sharifi, A. F. Laguna, F. Miiller, R. Rajaei, R. Olivo, T. Kimpfe, M. Niemier, and X. S. Hu,
“In-memory nearest neighbor search with fefet multi-bit content-addressable memories,” in 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE). 1EEE, 2021, pp. 1084-1089.

R. Khaddam-Aljameh, M. Stanisavljevic, J. F. Mas, G. Karunaratne, M. Braendli, F. Liu, A. Singh, S. M. Miiller,
U. Egger, A. Petropoulos et al., “Hermes core—a 14nm cmos and pcm-based in-memory compute core using an array of
300ps/1sb linearized cco-based adcs and local digital processing,” in 2021 Symposium on VLSI Circuits. 1EEE, 2021,
pp. 1-2.

M. Le Gallo, R. Khaddam-Aljameh, M. Stanisavljevic, A. Vasilopoulos, B. Kersting, M. Dazzi, G. Karunaratne,
M. Briéndli, A. Singh, S. M. Mueller et al., “A 64-core mixed-signal in-memory compute chip based on phase-change
memory for deep neural network inference,” Nature Electronics, pp. 1-14, 2023.

Q. Dong, M. E. Sinangil, B. Erbagci, D. Sun, W.-S. Khwa, H.-J. Liao, Y. Wang, and J. Chang, “15.3 a 351tops/w and
372.4 gops compute-in-memory sram macro in 7nm finfet cmos for machine-learning applications,” in 2020 IEEE
International Solid-State Circuits Conference-(ISSCC). 1EEE, 2020, pp. 242-244.

H. Wang, R. Liu, R. Dorrance, D. Dasalukunte, D. Lake, and B. Carlton, “A charge domain sram compute-in-memory
macro with c-2c ladder-based 8-bit mac unit in 22-nm finfet process for edge inference,” IEEE Journal of Solid-State
Circuits, vol. 58, no. 4, pp. 1037-1050, 2023.

S. De, F. Mueller, N. Laleni, M. Lederer, Y. Raffel, S. Mojumder, A. Vardar, S. Abdulazhanov, T. Ali, S. Diinkel et al.,
“Demonstration of multiply-accumulate operation with 28 nm fefet crossbar array,” IEEE Electron Device Letters,
vol. 43, no. 12, pp. 20812084, 2022.

G. Pedretti, C. E. Graves, S. Serebryakov, R. Mao, X. Sheng, M. Foltin, C. Li, and J. P. Strachan, “Tree-based machine
learning performed in-memory with memristive analog cam,” Nature communications, vol. 12, no. 1, p. 5806, 2021.
K. Akarvardar and H.-S. P. Wong, “Technology prospects for data-intensive computing,” Proceedings of the IEEE, vol.
111, no. 1, pp. 92-112, 2023.

C. Zhang, H. Sun, S. Li, Y. Wang, H. Chen, and H. Liu, “A survey of memory-centric energy efficient computer
architecture,” IEEE Transactions on Parallel and Distributed Systems, 2023.

“Axelera,” https://www.axelera.ai/digital-in-memory-computing-for-deep-learning-acceleration/.

“d-matrix,” https://www.d-matrix.ai/.

“Gyrfalcon tech,” https://www.gyrfalcontech.ai/about-us/company-overview/.

“Memcpu,” https://www.memcpu.com/.

“Memverge,” https://memverge.com/company/.

“mythic,” https://mythic.ai/.

“Neuroblade,” https://www.neuroblade.com/product/.

“Rain,” https://rain.ai/about-us/.

“Semron,” https://www.semron.ai.

“Surecore,” https://www.sure-core.com.

“Synthara,” https://www.synthara.ai.

“Syntiant,” https://www.syntiant.com/.

“Tetramem,” https://www.tetramem.com.

M. Rao, H. Tang, J. Wu, W. Song, M. Zhang, W. Yin, Y. Zhuo, F. Kiani, B. Chen, X. Jiang et al., “Thousands of
conductance levels in memristors integrated on cmos,” Nature, vol. 615, no. 7954, pp. 823-829, 2023.

“Encharge ai,” https://enchargeai.com.

https://www.axelera.ai/digital-in-memory-computing-for-deep-learning-acceleration/
https://www.d-matrix.ai/
https://www.gyrfalcontech.ai/about-us/company-overview/
https://www.memcpu.com/
https://memverge.com/company/
https://mythic.ai/
https://www.neuroblade.com/product/
https://rain.ai/about-us/
https://www.semron.ai
https://www.sure-core.com
https://www.synthara.ai
https://www.syntiant.com/
https://www.tetramem.com
https://enchargeai.com

CNM/CIM Landscape 39

[99]
[100]
[101]
[102]

[103]
[104]

[105]

[106]

“Reconceive,” https://www.re-conceive.com/home.

“Fractile,” https://www.fractile.ai/.

“Untether,” https://www.untether.ai/.

A. Siemieniuk, L. Chelini, A. A. Khan, J. Castrillon, A. Drebes, H. Corporaal, T. Grosser, and M. Kong, “OCC: An
automated end-to-end machine learning optimizing compiler for computing-in-memory,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 41, no. 6, pp. 1674-1686, Aug. 2021.
[Online]. Available: https://ieeexplore.ieee.org/document/9502921

A. A. Khan, H. Farzaneh, K. F. Friebel, L. Chelini, and J. Castrillon, “Cinm (cinnamon): A compilation infrastructure
for heterogeneous compute in-memory and compute near-memory paradigms,” arXiv preprint arXiv:2301.07486, 2022.
H. Farzaneh, J. P. C. de Lima, M. Li, A. A. Khan, X. S. Hu, and J. Castrillon, “C4cam: A compiler for cam-based
in-memory accelerators,” arXiv preprint arXiv:2309.06418, 2023.

J. P. C. de Lima, A. A. Khan, H. Farzaneh, and J. Castrillon, “Full-stack optimization for cam-only dnn inference,” in
Proceedings of the 2024 Design, Automation and Test in Europe Conference (DATE), ser. DATE’24. 1EEE, Mar.
2024, pp. 1-6.

J. Ryckaert, M. Niemier, Z. Enciso, M. M. Sharifi, X. S. Hu, I. O’Connor, A. Graening, R. Sharma, P. Gupta, J. Castrillon,
J.P.C. de Lima, A. A. Khan, and H. Farzaneh, “Smoothing disruption across the stack: Tales of memory, heterogeneity,
and compilers,” in Proceedings of the 2024 Design, Automation and Test in Europe Conference (DATE), ser. DATE’24.
IEEE, Mar. 2024, pp. 1-6.

https://www.re-conceive.com/home
https://www.fractile.ai/
https://www.untether.ai/
https://ieeexplore.ieee.org/document/9502921

ACRONYMS

CIM compute-in-memory v v v v v it e e e e e e e e e e 1
IMC in-memory-computing i e e e e e e e e e 4
IMP in-memory-processing i e e e e e e e e 4
LIM logic-in-memory 0 i i i i e e e e e e e e e 4
PIM processing-in-memory e e e 4
PUM processing-using-memory it e e 4
CNM compute-near-memory oo v v v v it e e e 4
NMC near-memory-computing e e 4
PNM processing-near-memoryo it e e e e e e e 4
NMP near-memory-processing e e 4
ADC analog-to-digital converter e e e e 5
APU accelerated processing unito e e 16
BL bitline e 7
BLB bitlinebar e e 7
CIM-A CIM-array ottt e e e e e e e e e e e e e 5
CIM-P CIM-peripheral e 5
CAM content-addressable-memory e 17
CNN convolutional neural network 17
COM compute-outside-memory v v v v v i i e e e e e e e 4
DAC digital-to-analog convertero e 5
DNN deep neural network e e e 18
DPU data processing unit e e e e 11

DRAM dynamic random-access memory 5

CNM/CIM Landscape

FeFET ferroelectric field-effect transistor i i i

FPU floating-point unit

HBM high bandwidth memory o i i e e e e e e e e

ISA instruction set architecture e e

LUT look-up table . . .

MAC multiply-accumulate e e e e e

MLC multi-level cell . .

MOS metal-oxide-semiconductor e

MRAM magnetic RAM

MTJ magnetic tunnel junction i e e e e

MPSoC multiprocessor system-on-chip i i e e

NN neural-network . . .

NVM non-volatile memory e e e e e

OMP outside memory processing v v v v v i i e e e e e e e

PCM phase change memory e e e

PU processing unit . . .

RRAM resistive RAM .

SDK software development kit

SIMD single-instruction multiple-data

SLC single-level cell . .

SoC system-on-chip . .

SRAM static random-access Memory v v v v v e e e e e e e

SOT Spin-orbit-torque .

STT spin-transfer-torque

41

42 Asif Ali Khan, Joao Paulo C. de Lima, Hamid Farzaneh, and Jeronimo Castrillon

TRA ftriple row activation i i e e e e e e e e 21
TSVs through-siliconvias e 7
WL wordline e 7
CAGR compound annual growthrate e 2
MVM matrix-vector multiplication e 5
SA sense amplifier e e e e e e 12

LLM large language models e 1

	Abstract
	1 Introduction
	2 Terminology and background
	2.1 Mainstream Von-Neumann Computing
	2.2 Memory-centric computing

	3 Technology overview
	3.1 Memory subsystem
	3.2 dram
	3.3 SRAM
	3.4 Phase change memory (pcm)
	3.5 Resistive RAM (rram)
	3.6 Magnetic RAM (MRAM)
	3.7 Ferroelectric Field-Effect Transistor (FeFET)
	3.8 Comparison and discussion

	4 Selected architectures
	4.1 CNM architectures
	4.2 cim architectures
	4.3 Comparative analysis and discussion

	5 Commercial landscape
	5.1 Axelera
	5.2 d-Matrix
	5.3 Gyrfalcon Technology
	5.4 MemComputing
	5.5 Memverge
	5.6 Mythic
	5.7 NeuroBlad
	5.8 Rain AI
	5.9 SEMRON
	5.10 SureCore
	5.11 Synthara
	5.12 Syntiant
	5.13 TetraMem
	5.14 EnCharge AI
	5.15 Re(conceive) AI
	5.16 Fractile AI
	5.17 Untether AI
	5.18 UPMEM Technology
	5.19 Summary
	5.20 Open challenges

	6 Conclusions
	References

